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<esr@thyrsus.com>.

Try to batch up your error reports, especially the typos. One email with a lot of corrections in it is
better than a dozen single- charadives.
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during the writing that references by number sometimes confase
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® | use logical or "British"-style quoting in accordance with established hacker custom, and |
distinguish between single ‘philosopher’s’ quotes for mentions and double quotes for actual
quotations. If you think | have observed the distinction incorrectly, correct me — but don't try to
abolish it in favor of the American double-quotes-only style, which | loathe.

(Yes, I'm an American. So what? | grew up in Europe. | eat with my fork in my left hand, bar my
7s, like metric measures, and wince at mm/dd/yy dates too. There are some things my country
just gets persistently wronglas.)

® Suggest illustrations and pictures, appropriate diagrams and charts. The book-design people like
it when they can break up long dry stetches of text witisizal.

e |[f you think you have a better lead quote for any of the chapters, doetell

® |'m also open to more case studies. But don't just say "You should mention project foo in the
discussion of bar"; explaiwhythe software is a good case study, and what design principles and
conventions it illustrates. All case studies must be open-source. Small projects with clean code
are best, so they can easilyrbad.
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Unix is not so much an operating system as anlisdbry.
--Neal Stephenson

There is a vast difference between knowledge and expertise. Knowledge lets you deduce the right
thing to do; expertise makes the right thing a reflex, hardly requiring conscious thoalht at

This book has a lot of knowledge in it, but it is mainly about expertise. It is going to try to teach you
the things about Unix development that Unix experts know, but aren’t aware that they know. It is
therefore less about technicalia and more abloatedculture than most Unix books — both explicit
and implicit culture, both conscious and unconscious traditions. It is not a “how-to” book, it is a
“why-to” book.

The why-to has great practical importance, because far too much software is poorly designed. Much of
it suffers from bloat, is exceedingly hard to maintain, and is too difficult to port to new platforms or
extend in ways the original programmers didn’'t anticipate. These problems are symptoms of bad
design. We hope that readers of this book will learn something of what Unix has to teach about good
design.

This book goes Gaul one better by being divided into four parts: Context, Design, Tools, and
Community. The first part (Context) is philosophy and history, intended to provide foundation and
motivation for what follows. The second part (Design) unfolds the principles of the Unix philosophy

into more specific advice about design and programming. The third part (Tools) focuses on the
software Unix provides for helping you solve problems. The fourth part (Community) is about the
human-to-human transactions and agreements that make the Unix culture so uniquely effective at what
it does.

Because this is a book about shared culture, the author never planned to write it alone. You will notice
that the text includes guest appearances by prominent Unix developers, the shapers of the Unix
tradition. The book went through an extended public review process during which the author invited
these luminaries to comment on and argue with the text. Rather than submerging the results of that
review process in the final version, these guests were encouraged to speak with their own voices,
amplifying and developing and even disagreeing with the main line téxthe

This book is written using the editorial ‘we’ not to pretend omniscience but reflecting the fact that it is
an attempt to articulate the expertise of an entire community. One of the ‘guests’ will be the author
himself, occasionally speaking in first person to convey a reminiscence, a war story, or a personal
opinion that is not necessarily reflective of the Unix communitgrge.



Because this book is aimed at transmitting culture, it includes much more in the way of history and
folklore and asides than is normal for a technical book. Enjoy; these things, too, are part of your
education as a Unix programmer. No single one of the historical details is vital, but the gestalt of them
all is important. We think it makes a more interesting story this way. More importantly, understanding
where Unix came from and how it got the way it is will help you develop an intuitive feel for the Unix
style.

For the same reason, we refuse to write as if history is over. You will find an unusually large number
of references to the time of writing in this book. We do not wish to pretend that current practice

reflects some sort of timeless and perfectly logical outcome of preordained destiny. References to time
of writing are meant as an alert to the reader two or three or five years hence that the associated
statements of fact may have become dated and shodioubé-checked.

Other things this book is not are a C tutorial, nor a guide to the Unix commands and API. It is not a
reference for sed or Yacc or Perl or Python. It's not a network programming primer, nor an exhaustive
guide to the mysteries of X. It's not a tour of Unix’s internals and architecture, either. There are other
books that cover these specifics better, and this book will point you at thegpragriate.

Beyond all these technical specifics, the Unix culture has an unwritten engineering tradition that has
developed over literally millions of man-years of skilled effort. This book is written in the belief that
understanding that tradition, and adding its design patterns to your toolkit, will help you become a
better programmer ardesigner.

Cultures consist of people, and the traditional way to learn Unix culture is from other people and
through the folklore, by osmosis. This book is not a substitute for person-to-person acculturation, but it
can help accelerate the process by allowing you to tap the experiastberst



Who Should Read ThisBook

You should read this book if you are an experienced UNIX programmer who is often in the position of
either educating novice programmers or partisans of other operating systems, and you find it hard to
articulate the benefits of the UNIgpproach.

You should read this book if you are a C, C++ or Java programmer with experience on other operating
systems who is about to start a Unix-bagegject.

You should read this book if you are an Unix user with novice-level up to middle-level skills in the
operating system, but little development experience, and want to learn how to design software
effectively undetJnix.

You should read this book if you are a non-Unix programmer who has figured out that the Unix
tradition might have something to teach you. We believe you're right, and that the Unix philosopy can
be exported to other operating systems. So we will pay more attention to non-Unix environments
(especially Microsoft operating systems) than is usual in a Unix book; and when tools and case studies
are portable, we’'ll sago.

You should read this book if you are an application architect considering platforms or implementation
strategies for a major general-market or vertical application. It will help you understand the strengths
of Unix as a development platform, and of the Unix tradition of open source as a develmathert.

You shouldnot read this book if what you are looking for is the details of C coding or how to use the
Unix kernel API. There are many good books on these t8picanced Programming in the Unix
EnvironmenfStevens93]s classic among explorations of the Unix API, wHites Practice of
ProgrammingKernighan&Pike99jis recommended reading for all C programmers (indeed for all
programmers in ankanguage).




How To Use ThisBook

This book is both practical and philosophical. Some parts will be aphoristic and general, others will
examine specific case studies in Unix development. We will try to precede or follow general principles
and aphorisms with examples that illustrate them, examples drawn not from toy demonstration
programs but rather from real working code that is in use ey

We have deliberately avoided filling the book with lots of code or specification-file examples, even
though in many places this might have made it easier to write (and in some places perhaps easier to
read!). Most books about programming run to too many low-level details and examples, but fail at
giving the reader a high-level feel for what is really going on. In this book, we prefer to err in the
oppositedirection.

Therefore, while you will often be invited to read code and specification files, relatively few are
actually included in the book. Instead, we’ll point you at examples oWéie

All the code referenced in this book is available on-line, in open source, over the Internet. Use that
resource! The case studies we choose are exemplars. You'll notice that some of these exemplars come
up repeatedly, as case studies from different angles. This is deliberate; it is intended to reduce the
amount of code and documentation you have to read in order to observe the entire range of design
patterns waliscuss.

Absorbing these examples will help solidify the principles you learn into semi-instinctive working
knowledge. Ideally, you should read this book near the console of a running Linux system, with a web
browser handy; any Unix will do, but the software case studies are more likely to be immediately
available for inspection on a Linux box. The pointers in the book are invitations to browse and
experiment. Introduction of these pointers is paced so that wandering off to explore for a while won't
break up exposition that has todmntinuous.

Note: while we have made every effort to cite URLs that should remain stable and usable, there is no
way we can guarantee this. If you find that a cited link has gone stale, use common sense and do a
phrase search with your favorite Web search engine. Where possible we suggest ways to do this near
the URLs wetite.

Most abbreviations used in this book are expanded at first use. For convenience, we have also
provided a glossary in appendix.

References are usually by author name. Numbered footnotes are for URLs that would intrude on the
text or that we suspect might be perishable; also for for asides, war storifskesl.

In an effort to make this book more accessible to less technical readers, some non-programmers were
invited to read it and put a finger on terms that seemed both obscure and necessary to the flow of
exposition. Footnotes are also used for definitions of elementary terms that they designated but an
experienced programmer is unlikelyrteed.

[ This particular footnote is dedicated to Terry Pratchett, whose use of footngig isinspiring.



Related References

Some famous papers and a few books by Unix’s early developers have mined this territory before.
Kernighan & Pike’sThe Unix ProgrammingnvironmenfKernighan&Pike84Jstands out among

these and is rightly considered a classic. But today it shows its age a bit; it doesniCBiéY,the
Internet, and the World Wide Web or the new wave of interpretive languages like Perl, Tcl, and
Python.

About halfway into the composition of this book, we learned of Mike GancangdJnixPhilosophy

This book is excellent within its range, but did not attempt to cover the full spectrum of
topics which we felt needed to be addressed. Nevertheless we are grateful to the author for the
reminder that the very simplest Unix design patterns have been the most persistent and successful
ones.

The Pragmati®Programmef{Hunt&Thomas]is a witty and wise disquisition on good design practice
pitched at a slightly different level of the software-design craft (more about coding, less about
higher-level partitioning of problems) than this book. The authors’ philosophy is an outgrowth of Unix
experience, and it is an excellent complement toiidsk.

The Practice oProgrammingKernighan&Pike99Jcovers some of the same ground’he Pragmatic
Programmerfrom a position deep within the Unisadition.

Finally (and with admitted intent to provoke) we recommzgad Flesh, ZeBone{Zen] an

important collection of Zen Buddhist primary sources. There will be references to Zen scattered
throughout this book. They are included because because Zen provides a vocabulary for addressing
some ideas that turn out to be very important for software design but are otherwise very difficult to
hold in the mind. Readers with religious attachments are invited to consider Zen not as a religion but
as a therapeutic form of mental discipline — which, in its purest non-theistic forms, is exactly what
Zenis.



ConventionsUsed In ThisBook

The term “Unix” is technically and legally a trademark of the X/Open group, and should formally be
used only for operating systems which are certified to have passed X/Open'’s elaborate
standards-conformance tests. In this book we use “Unix” in the looser sense widely current among
programmers, to refer to any operating system (whether formally Unix-branded or not) that is either
genetically descended from Bell Labs’s ancestral Unix code or written in close imitation of its
descendants. In particular, Linux (from which we draw most of our examples) is a Unix under this
definition.

This book employs the Unix manual page convention of tagging Unix facilities with a following

manual section in parentheses, usually on first introduction when we want to emphasize that this is a
Unix command. Thus, for example, read “munger(1)” as “the ‘munger’ program, which will be
documented in section 1 (user tools) of the Unix manual pages, if it's present on your system.” Section
2 is C system calls, section 3 is C library calls, section 5 is file formats and protocols, section 8 is
system administration tools. Other sections vary between Unixes but are not cited in this book. For
more, typeman 1 man at your Unix shell prompt (older System V Unixes may requia@ -s 1

man).

Sometimes we will mention a Unix application (such as yacc, emacs, lex) without a manual-section
suffix. This is a clue that the name actually represents a well-established family of Unix programs with
essentially the same function, and we are discussing generic properties of all of them. Yacc, for
example, stands in not just for yacc itself but for bison and byacc as well; emacs includes xemacs; and
lex also includeflex.

At various points later in this book we’'ll refer to ‘old-school’ and ‘new-school’ methods. As with rap
music, new-school starts about 1990; in this context, it's associated with the rise of scripting
languagesGUIs, open-source Unixes, and the Web. Old-school refers to the pre-1990 (and especially
pre-1985) world of expensive computers, proprietary Unixes, scripting in shell, and C everywhere.
This difference is worth pointing out because cheaper and less memory-constrained machines have
wrought some significant changes on the Unix programistiylg.



Our CaseStudies

A lot of books on programming rely on toy examples constructed specifically to prove a point. This
one won't. Our case studies will be real, pre-existing pieces of software that are in production use
every day. Here are some of the majoes:

cdrtools/xcdroast

These are two separate projects that are usually used together. The cdrtools package is a set of
CLI tools for writing CD-ROMS; web search for “cdrtools”. The xcdroast application is a GUI
front end for cdrtools; see tixedroast projecsite

fetchmail

Fetchmail is a program that retrieves mail from remote-mail servers using the POP3 or IMAP
post-office protocols. There igf@chmail homegagg¢(or search for "fetchmail" in padiles).

GIMP

The GIMP (Gnu Image Manipulation Program) is a full-featured paint, draw, and
image-manipulation program that can edit a huge variety of graphical formats in sophisticated
ways. Sources are available from [BBMP homepagé(or search for "GIMP" in pagitles).

keeper

The program used to create World Wide Web and FTP indexes that put an easily-navigable
structure on the Metalab archive. Sources are available on ibiblio in the ‘sdiagchory.

mutt

The mutt mail user agent is the current best-of-breed among Unix electronic mail agents, with
notably good support faviIME(MultipurposeInternet Mail Extensions) and the use of privacy
aids such as PGP (Pretty Good Privacy) and GPG (Gnu Privacy Guard). Source code and
executable binaries are available afvhét projectsitd

xmlto

A command to render DocBook and other XML documents in various output formats, including
HTML and text and Postscript. Sources and documentation [airilie projectsitd

To minimize the amount of code the user needs to read to understand the examples, we have tried to
choose case studies that can be used more than once, ideally to illustrate several different design
principles and practices. For this same reason, many of the examples are from projects of the author;
no claim that these are the best possible ones are implied, merely that the author finds them
sufficiently familiar to be useful for multiple expositgqoyrposes.
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Chapter 1. Philosophy
Philosophy Matters
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Those who do not understand Unix are condemned to reinvpabity.

--Henry Spencer



Culture? What culture?

This is a book about Unix programming, but in it we’re going to toss around the words ‘culture’, ‘art’
and ‘philosophy’ a lot. If you are not a programmer, or you are a programmer who has had little
contact with the Unix world, this may seem strange. But Unix has a culture; it has a distinctive art of
programming; and it carries with it a powerful design philosophy. Understanding these traditions will
help you build better software, even if you're developing for a non-platkorm.

Every branch of engineering and design has technical cultures. In most kinds of engineering, the
unwritten traditions of the field are parts of a working practitioner’s education as important as (and, as
experience grows, often more important than) the official handbooks and textbooks. Senior engineers
develop huge bodies of implicit knowledge, which they pass to their juniors Bef@uddhists put

it) “a special transmission, outside t&iptures”.

Software engineering is generally an exception to this rule; technology has changed so rapidly,
software environments have come and gone so quickly, that technical cultures have been weak and
ephemeral. There are, however, exceptions to this exception. A very few software technologies have
proved durable enough to evolve strong technical cultures, distinctive arts, and an associated design
philosophy transmitted across generationsrafineers.

The Unix culture is one of these. The Internet culture is another — or, in the twenty-first century,
perhaps the same one. The two have grown increasingly difficult to separate since the early 1980s, and
in this book we won't try particularligard.



The durability of Unix

Unix was born in 1969, and has been in continuous production use ever since. That's several geologic
eras by computer-industry standards — older than the PC or workstations or microprocessors or even
video display terminals, and contemporaneous with the first semiconductor memories. Unix holds the
record for longest service life of any multiuser operating system, Ever.

Unix has found use on a wider variety of machines than any other operating system can claim. From
supercomputers to handhelds and embedded networking hardware, through workstations and servers
and PCs and minicomputers, Unix has probably seen more architectures and more odd hardware than
any three other operating systeoosnbined.

Unix has supported a mind-bogglingly wide spectrum of uses. No other operating system has shone
simultaneously as a research vehicle, a friendly host for technical custom applications, a platform for
commercial-off-the-shelf business software, and a vital component technologyirtktinet.

Confident predictions that Unix would wither away, or be crowded out by other operating systems,
have been made yearly since its infancy. And yet Unix, in its present-day avatemsxandBSD
and Solaris and Mac OS X and half a dozen other variants, seems stronger thedegver

At least one of Unix’s central technologies — the C language — has been widely naturalized
elsewhere. Indeed it is now hard to imagine doing software engineering witlaswa ubiquitous
linguafrancaof systems programming. Unix also introduced the now-ubiquitous tree-shaped file
namespace with directonodes.

Unix’s durability and adaptability have been nothing short of astonishing. Other technologies have
come and gone like mayflies. Machines have increased a thousandfold in power, languages have
mutated, industry practice has gone through multiple revolutions — and Unix hangs in there, still
producing, still paying the bills, and still commanding loyalty from many of the best and brightest
software technologists on tipganet.

Much of Unix’s success has to be attributed to Unix’s inherent strengths, to design decisions Ken
Thompsorand DenniRitchie and BrianKernighanandougMcllroy and RolPike and other early

Unix developers made back at the beginning; decisions that have been proven sound over and over.
But just as much is due to the design philosophy, art of programming, and technical culture which
grew up around Unix in the early days, and has continuously and successfully propagated itself in
symbiosis with Unix evesince.

[{ About the only competitor in longevity IBM’s MVS operating system for S/390 mainframes,
born in1965.



The case against learning Unixulture

Unix’s durability and its technical culture are certainly of interest to people who already like Unix, and
perhaps to historians of technology. But Unix’s original application as a general-purpose timesharing
system for larger computers is rapidly receding into the mists of history, killed off by personal
workstations. And there is certainly room for doubt that it will ever achieve success in the mainstream
business-desktop market presently dominateillicyosoft.

Outsiders have frequently dismissed Unix as an academic toy or a hacker’s sandbox. One well-known
polemic, theUnix Hater'sHandbooK Garfinkel etal.] follows an antagonistic line nearly as old as

Unix itself in writing its devotees off as a cult religion of freaks and losers. Certainly the colossal and
repeated blunders &T&T, Sun,Novell, and other commercial vendors and standards consortia in
mis-positioning and mis-marketing Unix have becdegendary.

Even from within the Unix world, Unix has seemed to be teetering on the brink of universality for so
long as to raise the suspicion that it will never actually get there. A skeptical outside observer’s
conclusion might be that Unix is too useful to die but too awkward to break out of the back room, a
perpetual niche operatirgystem.

What confounds the skeptics’ case is, more than anything else, thelrisa>ofind other open-source
Unixes. Unix’s culture proved too vital to be smothered even by a decade of vendor mismanagement.
Today the Unix community itself has taken control of the technology and marketing, and is rapidly
and visibly solving Unix’groblems.



What Unix getswrong

For a design that dates from 1969, it is remarkably hard to identify design choices in Unix that are
unequivocally wrong. There are several popular candidates, but each is still a subject of spirited debate
not merely among Unix fans but across the wider community of people who think about and design
operatingsystems.

Unix files have no structure above byte level. File deletion is forever. The Unix security model is
arguably too primitive. There are too many different kinds of names for things. Having a file system at
all may have been the wrong choice. We will discuss these technical issues in

Perhaps the most enduring objections to Unix are consequences of a feature of its philosophy first
made explicit by the designers of the X windsystem X strives to provide “mechanism, not policy”,
supporting an extremely general set of graphics operations and deferring decisions about toolkits and
interface look-and-feel (the policy) up to application level. Unix’s other system-level services display
similar tendencies; final choices about behavior are pushed as far towards the user as possible. Unix
users can choose among multiple shells. Unix programs normally provide many behavior options and
sport elaborate preferentazilities.

This tendency reflects Unix’s heritage as an operating system designed primarily for technical users,
and a consequent belief that users know better than operating-system designers what their own needs
are. But the cost of this approach is that when theaaseset policy, the usenustset policy.

Non-technical end-users frequently find Unix’s profusion of options and interface styles

overwhelming and retreat to systems that at least pretend to offesithelitity.

In the short term, Unix’s laissez-faire approach may lose it a good many nontechnical users. In the
long term, however, it may turn out that this ‘mistake’ confers a critical advantage — because policy
tends to have a short lifetime, mechanism a long one. Today’s fashion in interface look-and-feel too
often becomes tomorrow’s evolutionary dead end (as people using obsolete X toolkits will tell you
with some feeling!) So the flip side of the flip side is that the “mechanism, not policy” philosophy may
enable Unix to renew its relevance long after competitors more tied to one set of policy or interface
choices have faded fromew.



What Unix getsright

The explosive recent growth binux, and the increasing importance of the Internet, give us good
reasons to suppose that the skeptic’s case is wrong. But even supposing the skeptical assessment is
true, Unix culture is worth learning because there are some things that Unix and its surrounding
culture clearly do better than angmpetitors.

Open-sourcesoftware

Though the term “opesource’andhe Open Source Definition were not invented until 1998,
peer-review-intensive development of freely shared source code was a key feature of the Unix culture
from itsbeginnings.

For its first ten yearAT&T'’s original Unix was normally distributed with source code. This enabled
most of the other good things that folldwere.

Cross-platform portability and open standards

Unix is still the only operating system that can present a consistent, documented application
programming interface (API) across a heterogenous mix of computers, vendors, and special-purpose
hardware. It is the only operating system that can scale from embedded chips and handhelds, up
through desktop machines, through servers, and all the way to special-purpose number-crunching
behemoths and database banks.

The Unix APl is the closest thing to a hardware-independent standard for writing truly portable
software that exists. It is no accident that what the IEEE originally calldebiftable Operating
SystenStandardquickly got a suffix added to its acronym and bec®O&IX. A Unix-equivalent
API was the only credible model for sucktandard.

Binary-only applications for other operating systems die with their birth environments, but Unix
sources are forever. Forever, at least, given a Unix technical culture that polishes and maintains them
acrosglecades.

The Internet

The Defense Department’s contract for the first productioR/IP stack went to a Unix development
group because the Unix was open source. Be3i@€%IP,Unix has become the one indispensible

core technology of the Internet service industry. Ever since the demise of the TOPS family of
operatingsystemsn the mid-1980s, most Internet server machines (and effectively all above the PC
level) have beebnix.

Not evenMicrosoft’'s awesome marketing clout has been able to dent Unix’s lock on the Internet.

While theTCP/IPstandards on which the Internet is based evolved dr@BS-10and are

theoretically separable from Unix, attempts to make them work on other operating systems have been
bedeviled by incompatibilities, instabilities, and bugs. The theory and RFCs are available to anyone,
but the engineering tradition to make them into a solid and working reality exists only in the Unix
world.



The Internet technicalultureand the Unix culture began to merge in the the early 1980s, and are now
inseparably symbiotic. To function effectively as an Internet expert, an understanding of Unix and its
culture arandispensible.

The open-sourcecommunity

The community that originally formed around the early Unix source distributions never went away —
after the great Internet explosion of the early 1990s, it recruited an entire new generation of eager
hackerson homemachines.

Today, that community is a powerful support group for all kinds of software development.
High-quality open-source development tools abound in the Unix world (we’ll examine many in this
book). Open-source Unix applications are usually equal to, and are often superior to, their proprietary
equivalent§Barton etal.] Entire Unix operating systems, with complete toolkits and basic

applications suites, are available for free over the Internet. Why code from scratch when you can
adapt, reuse, recycle, and save yourself 90% oftink?

This tradition of code-sharing depends heavily on hard-won expertise about how to make programs
cooperative and reusable. And not by abstract theory, but through a lot of engineering practice —
unobvious design rules that allow programs to function not just as isolated one-shot solutions but as
synergistic parts of @olkit.

Today, a burgeoning open-source movement is bringing new vitality, new technical approaches, and
an entire generation of bright young programmers into the Unix tradition. Open-source projects
including theLinux operating system and symbiotes sucApacheand Mozilla have brought the

Unix tradition an unprecedented level of mainstream visibility and success. The open-source
movement seems on the verge of winning its bid to define the computing infrastructure of tomorrow
— and the core of that infrastructure will be Unix machines running oimtidaet.

Flexibility in depth

Many operating systems touted as more ‘modern’ or ‘user-friendly’ than Unix achieve their surface
glossiness by locking users and developers into one interface policy, and offer an
application-programming interface that for all its elaborateness is rather narrow and rigid. On such
systems, tasks the designers have anticipated are very easy — but tasks they have not anticipated are
often impossible or at best extremelinful.

Unix, on the other hand, has flexibility in depth. The many ways Unix provides to glue together
programs mean that components of its basic toolkit can be combined to produce useful effects that the
designers of the individual toolkit parts neeeticipated.

Unix’s support of multiple styles of program interface (often seen as a weakness because it increases
the perceived complexity of the system to end-users) also contributes to flexibility; no program that
wants to be a simple piece of data plumbing is forced to carry the complexity overhead of an elaborate
GUL.

Unix tradition lays heavy emphasis on keeping programming interfaces relatively small, clean, and
orthogonal — another trait that produces flexibility in depth. Throughout a Unix system, easy things
are easy and hard things are at |pastible.



Unix is fun to hack

People who pontificate about Unix’s technical superiority often don’t mention what may ultimately be
its most important strength, the one that underlies all its successes. Unix i©i&ak.to

Unix boosters seem almost ashamed to acknowledge this sometimes, as though admitting they're
having fun might damage their legitimacy somehow. But it's true; Unix is fun to play with and
develop for, and always hasen.

There are not many operating systems that anyone has ever described as ‘fun’. Indeed, the friction and
labor of development under most other environments has been aptly compared to kicking a dead whale
down the beach. The kindest adjectives one normally hears are on the order of “tolerable” or “not too
painful”. In the Unix world, by contrast, the OS is normally seen not as an adversary to be clubbed into
doing one’s bidding by main effort but rather as an actual posigie

This has real economic significance. The fun factor started a virtuous circle early in Unix’s history.
People liked Unix, so they built more programs for it that made it nicer to use. Today people build
entire, production-quality open-source Unix systems as a hobby. To understand how remarkable this
is, ask yourself when you last heard of anybody cloning OS/360 or VAX VMS or Mickvaadiows

for fun.

The “fun” factor is not trivial from a design point of view, either. The kind of people who become
programmers and developers have “fun” when the effort they have to put out to do a task challenges
them, but is just within their capabilities. “Fun” is therefore a sign of peak efficiency. Painful
development environments waste labor and creativity; they extract huge hidden costs in time, money,
andopportunity.

If Unix were a failure in every other way, the Unix engineering culture would be worth understanding
for the ways it keeps the fun in development — because that fun is a sign that it makes developers
efficient, effective, angroductive.

The lessons of Unix can be appliedisewhere

Unix programmers have accumulated decades of experience while pioneering operating-system
features we now take for granted. Even non-Unix programmers can benefit from studying that Unix
experience. Because Unix makes it relatively easy to apply good design principles and development
methods, it is an excellent place to letiram.

Other operating systems generally make good practice rather harder, but even so some of the Unix
culture’s lessons can transfer. Much Unix code (including all its filters, its major scigntigpgages,

and many of its code generators) will port directly to any operating system supportingCcAfésthe
excellent reason th&t itself was a Unix invention and the ANSI C library embodies a substantial
chunk of Unix'sservices!).



Basicsof the Unix philosophy

The ‘Unix philosophy’ originated with Kemhompson’searlyneditations on how to design a small

but capable operating system with a clean service interface. It grew as the Unix culture learned things
about how to get maximum leverage out of Thompson’s design. It absorbed lessons from many
sources along theay.

The Unix philosophy is not a formal design method. It wasn’'t handed down from the high fastnesses
of theoretical computer science as a way to produce theoretically perfect software. Nor is it that
perennial executive’s mirage, some way to magically extract innovative but reliable software on too
short a deadline from unmotivated, badly managed and undemogichmmers.

The Unix philosophy (like successful folk traditions in other engineering disciplines) is bottom-up, not
top-down. It is pragmatic and grounded in experience. It is not to be found in official methods and
standards, but rather in the implicit half-reflexive knowledgeetpertisethat the Unix culture

transmits. It encourages a sense of proportion and skepticism — and shows both by having a sense of
(often subversivehumor.

DougMcllroy, the inventor opipesand one of the founders of the Unix tradition, famously
summarized it this way (quoted AnQuarter Century obnix[[Salus):

This is the Unix philosophy. Write programs that do one thing and do it well. Write programs to
work together. Write programs to handle text streams, because that is a uimtenrfseale.

Mcllroy later expanded on tH{8STJ

(i) Make each program do one thing well. To do a new job, build afresh rather than complicate
old programs by adding nef@atures.

(i) Expect the output of every program to become the input to another, as yet unknown, program.
Don’t clutter output with extraneous information. Avoid stringently columnar or binary input
formats. Don't insist on interactivaput.

(i) Design and build software, even operating systems, to be tried early, ideally within weeks.
Don't hesitate to throw away the clumsy parts and retéd.

(iv) Use tools in preference to unskilled help to lighten a programming task, even if you have to
detour to build the tools and expect to throw some of them out after you've finishedhasing

RobPike,one of the great early mastersdfoffers a slightly different angle iNotes on C
ProgrammindPike}

Rule 1. You can't tell where a program is going to spend its time. Bottlenecks occur in surprising
places, so don't try to second guess and put in a speed hack until you’ve proven that's where the
bottlenecks.

Rule 2. Measure. Don't tune for speed until you've measured, and even then don’t unless one part
of the code overwhelms thest.

Rule 3. Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have
big constants. Until you know that n is frequently going to be big, don’t get fancy. (Even if n does
get big, use Rule first.)



Rule 4. Fancy algorithms are buggier than simple ones, and they’re much harder to implement.
Use simple algorithms as well as simple ddtactures.

Rule 5. Data dominates. If you've chosen the right data structures and organized things well, the
algorithms will almost always be self-evident. Data structures, not algorithms, are central to
programming. (See Brooks 102.)

Rule 6. There is no Ruk&

Ken Thompsonthe man who designed and implemented the first Unix, reinforced Pike’s rule 4 with a
gnomic maxim worthy of Zenpatriarch:

When in doubt, use bruferce.

More of the Unix philosophy was implied not by what these elders said but by what they did and the
example Unix itself set. Looking at the whole, we can abstract the follddéag:

1. Rule of Modularity: Write simple parts connected by cleserfaces.

2. Rule of Composition: Design programs to be connected to ptbhgrams.

3. Rule of Clarity: Clarity is better thazleverness.

4. Rule of Simplicity: Design for simplicity; add complexity only where youst.

5. Rule of Transparency: Design for visibility to make inspection and debuggsigr.

6. Rule of Robustness: Robustness is the child of transparencsjnapiitity.

7. Rule of Least Surprise: In interface design, always do the least surphisigg

8. Rule of Repair: When you must fail, fail noisily and as sogpogsible.

9. Rule of Economy: Programmer time is expensive; conserve it in preference to mewxhine
10. Rule of Generation: Avoid hand-hacking; write programs to write programs wheragou
11. Rule of Representation: Use smart data so program logic can be stupidasid
12. Rule of Separation: Separate policy from mechanism; separate interfacen{riomes.

13. Rule of Optimization: Prototype before polishing. Get it working before you optimize
14. Rule of Diversity: Distrust all claims for “one trueay”.
15. Rule of Extensibility: Design for the future, because it will be here sooner thahig&u

If you're new to Unix, these principles are worth some meditation. Software-engineering texts
recommend most of them; but most other operating systems lack the right tools and traditions to turn
them into practice, so most programmers can’t apply them with any consistency. They come to accept
blunt tools, bad designs, overwork, and bloated code as normal — and then wonder what Unix fans are
S0 annoye@bout.



Rule of Modularity: Write simple parts connected by cleaninterfaces.

As Brian Kernignan once observed, “Controlling complexity is the essence of computer
programming.” Debugging dominates development time, and getting a working system out the door is
usually less a result of brilliant design than it is of managing not to trip over your own feet too many
times.

Assemblers, compilers, flowcharting, procedural programming, structured programming, “artificial
intelligence”, fourth-generation languages, obantation,and software-development

methodologies without number have been touted and sold as a cure for this problem. All have failed, if
only because they ‘succeeded’ by escalating the normal level of program complexity to the point
where (once again) human brains could barely cope. AsBfomksfamously observefBrooks]

there is no silvebullet.

The only way to write complex software that won't fall on its face is to hold its global complexity
down — to build it out of simple parts connected by well-defined interfaces, so that most problems are
local and you can have some hope of upgrading a part without breakimbdlee

Rule of Composition: Design programs to be connected with other
programs.

It's hard to avoid programming overcomplicated monoliths if none of your programs can talk to each
other.

Unix tradition puts a lot of emphasis on writing programs that read and write simple, textual,
stream-oriented, device-independent formats. Under classic Unix, as many programs as possible are
written as simpldilters, which take a simple text stream on input and process it into another simple
text stream oloutput.

Despite popular mythology, this is not because Unix programmers hate graphical user interfaces. It's
because if you don't write programs that accept and emit simple text streams, it's much more difficult
to hook thentogether.

Text streams are to Unix tools as objects are to messages in an object-oriented setting. The simplicity
of the text-stream interface enforces the encapsulation of the tools. More elaborate forms of IPC, such
as remote procedure calls, show a tendency to involve programs with each others’ intemathtoo

GUIs can be a very good thing. Complex binary data formats are sometimes unavoidable by any
reasonable means. But before writing a GUI, it's wise to ask if the tricky interactive parts of your
program can be segregated into one piece and the workhorse algorithms into another, with a simple
command stream or application protocol connecting the two. Before devising a tricky binary format to
pass data around, it's worth experimenting to see if you can make a simple textual format work and
accept a little parsing overhead in return for being able to hack the data stream with general-purpose
tools.

When such a serialized, protocol-like interface is not natural, proper Unix design is to at least organize
as many of the application primitives as possible into a library with a well-defined API. This opens up
the possibility that the application can be called by linkage, or to glue multiple interfaces on it for
differenttasks.



(We discuss these issues in detail in Cha®{®ultiprogramming))

Rule of Clarity: Clarity is better than cleverness.

Because maintenance is so important and so expensive, write programs as if the most important
communication they do is not to the computer that executes them but to the human beings who will
read and maintain the source code in the future (includiogself).

In the Unix tradition, the implications of this advice go beyond just commenting your code. Good
Unix practice also embraces choosing your algorithms and implementations for future maintainability.
Buying a small increase in performance with a large increase in the complexity and obscurity of your
technique is a bad trade — not merely because complex code is more likely to harbor bugs, but also
because complex code will be harder to read for fuhaimtainers.

Code that is graceful and clear, on the other hand, is less likely to break — and more likely to be
instantly comprehended by the next person to have to change it. This is important, especially when
that next person might be yourself some years dowrotu:

Rule of Simplicity: Design for simplicity; add complexity only where
you must.

There are many pressures which tend to make programs more complicated (and therefore more
expensive and buggy). One is technical machismo. Programmers are bright people who are (justly)
proud of their ability to handle complexity and juggle abstractions. Often they compete with their
peers to see who can build the most intricate and beautiful complexities. Just as often, their ability to
design outstrips their ability to implement and debug, and the result is explaiisine

Even more often (at least in the commercial software world) excessive complexity comes from project
requirements that are based on the marketing fad of the month rather than the reality of what
customers want or software can actually deliver. Many a good design has been smothered under
marketing’s pile of “check-list features” — features which, often, no customer will ever use. And a
vicious circle operates; the competition thinks it has to compete with chrome by adding more chrome.
Pretty soon, massive bloat is the industry standard and everyone is using huge, buggy programs not
even their developers céove.

Either way, everybody loses in thad.

The only way to avoid these traps is to encourage a software culture that actively resists bloat and
complexity — an engineering tradition that puts a high value on simple solutions, looks for ways to
break program systems up into small cooperating pieces, and reflexively fights attempts to gussy up
programs with a lot of chrome (or, even worse, to design progaeouadthechrome).

That would be a culture a lot likénix’s.
Rule of Transparency: Design for visibility to make inspection and
debuggingeasier.

Because debugging often occupies three-quarters or more of development time, work done early to
ease debugging can be a very good investment. A particularly effective way to accomplish this is to
design fortransparencyanddiscoverability



A software system igansparentwhen you can look at it and immediately understand what it is doing
and how. It iddiscoverablevhen it has facilities for monitoring and display of internal state so that
your program not only functions well but candsento functionwell.

Designing for these qualities will have implications throughout a project. At minimum, it implies that
debugging options should not be minimal afterthoughts. Rather, they should be designed in from the
beginning — from the point of view that the program should be able to both demonstrate its own
correctness and communicate the original developer’'s mental model of the problem it solves to future
developers.

In order for a program to demonstrate its own correctness, it needs to be using input and output
formats sufficiently simple so that the proper relationship between valid input and correct output is
easy tocheck.

The objective of designing for transparency and discoverability should also encourage simple
interfaces that can easily be manipulated by other programs — in particular, test and monitoring
harnesses and debuggsuripts.

Rule of Robustness: Robustness is the child of transparency and
simplicity.

Most software is buggy because most programs are too complicated for a human brain to understand
all at once. When you can'’t reason correctly about the guts of a program, you can't be sure it's correct,
and you can't fix it if it'sbroken.

It follows that the way to make programs that aren’t buggy is to make their internals easy for human
beings to reason about. There are two main ways to ddrdraparencyand andimplicity.

We observed above that softwarg¢rémsparentwhen you can look at it and immediately see what is
going on. It issimplewhen what is going on is uncomplicated enough for a human brain to reason
about all the potential cases withatrain.

Modularity (simple parts, clean interfaces) is a way to organize programs to make them simpler. There
are other ways to fight for simplicity. Here’s anotbee:

Rule of Least Surprise: In interface design, always do the least
surprising thing.

The easiest programs to use are those which demand the least new learning from the user — or, to put
it another way, the easiest programs to use are those that connect to the user’s pre-existing knowledge
mosteffectively.

Therefore, avoid gratuitous novelty and excessive cleverness in interface design — if you're writing a
calculator program, ‘+' should always mean addition! When designing an interface, model it on the
interfaces of functionally similar or analogous programs with which your users are likely to be
familiar.

Pay attention to tradition. The Unix world has rather well-developed conventions about things like the
format of configuration and run-control files, command-line switches, and the like. These traditions
exist for a good reason — to tame the learning curve. Learn arldemse



(We’'ll cover many of these traditions in Chap{er@extuality] and10 (Configuration))

Rule of Repair: Repair what you can — but when you must fail, falil
noisily and as soon apossible.

Software should beansparenand in the way that it fails as well as in normal operation. It's best

when software can cope with unexpected conditions by adapting to them, but the worst kinds of bugs
are those in which the repair doesn’t succeed and the problem quietly causes corruption that doesn’t
show up until muctater.

Therefore, write your software to cope with incorrect inputs and its own execution errors as gracefully
as possible — but when it cannot, make it fail in a way that makes diagnosis of the problem as easy as
possible.

Consider also PostelRrescriptiofd : “Be liberal in what you accept, and conservative in what you
send.” Postel was speaking of network service programs, but the underlying idea is more general.
Well-designed programs cooperate with other programs by making as much sense as they can from
ill-formed inputs; they either fail noisily or pass strictly clean and correct data to the next program in
thechain.

Rule of Economy: Programmer time is expensive; conserve it in
preference to machindime.

In the early minicomputer days of Unix, this was still a fairly radical idea (machines were a great deal
slower and more expensive then). Nowadays, with every development shop and most users (apart from
the few modeling nuclear explosions or doing 3D movie animation) awash in cheap machine cycles, it
may seem too obvious to nesdlying.

Somehow, though, practice doesn’'t seem to have quite caught up with reality. If we took this maxim
really seriously throughout software development, the percentage of applications written in

higher-level languages like Perl, Tcl, Python, Javsp and even shell — languages that ease the
programmer’s burden by doing their own memory manage[RenenbrooKwould be risingast.

And indeed this is happening within the Unix world, though outside it most applications shops still
seem stuck with the old-school Unix strategy of coding {or C++). Later in this book we’ll discuss
this strategy and its tradeoffsdetail.

One other obvious way to conserve programmer time is to teach machines how to do more of the
low-level work of programming. This leatts...

Rule of Generation: Avoid hand-hacking; write programs to write
programs when youcan.

Human beings are notoriously bad at sweating the details. Accordingly, any kind of hand-hacking of
programs is a rich source of delays and errors. The simpler and more abstracted your program
specification can be, the more likely it is that the human designer will have gotten it right. Generated
code (akeverylevel) is almost always cheaper and more reliable llaad-hacked.



We all know this is true (it's why we have compilers and interpreters, after all) but we often don't
think about the implications. High-level-language code that’s repetitive and mind-numbing for humans
to write is just as productive a target for code generator as machine code. It pays to use code
generators when they can raise the level of abstraction — that is, when the specification language is
simpler than the generated code, and the code doesn’'t have to be handafteckedds.

In the Unix tradition, code generators are heavily used to automate error-prone detail work.
Parser/lexer generators are the classic examples; makefile generators and GUI interface builders are
newerones.

(We cover these techniques in ChalgtéGeneratior])

Rule of Representation: Use smart data so program logic can be stupid
and robust.

Even the simplest procedural logic is hard for humans to verify, but quite complex data structures are
fairly easy to model and reason about. To see this, compare the expressiveness and explanatory power
of a diagram of (say) a fifty-node pointer tree with a flowchart of a fifty-line program. Or, compare a

C initializer expressing a conversion table with an equivalent switch statement. The difference in
transparencyand clarity isdramatic.

Data is more tractable than program logic. It follows that where you see a choice between complexity
in data structures and complexity in code, choose the former. More: in evolving a design, you should
actively seek ways to shift complexity from codeltda.

The Unix community did not originate this insight, but a lot of Unix code displays its influenc&€ The
language’s facility at manipulating pointers, in particular, has encouraged the use of
dynamically-modified reference structures at all levels of coding from the kernel upward. Simple
pointer chases in such structures frequently do duties that implementations in other languages would
instead have to embody in more elabopatecedures.

(We also cover these techniques in Chdpi{&eneratior])

Rule of Separation: Separate policy from mechanism; separate
interfaces from engines.

In our discussion of what Unix gets wrong, we observed that the designérsade a basic decision

to implement “mechanism, npblicy” — to make X a generic graphics engine and leave decisions
about user-interface style to toolkits and other levels of the system. We justified this by pointing out
that policy and mechanism tend to mutate on different timescales, with policy changing much faster
than mechanism. Fashions in the look and feel of GUI toolkits may come and go, but raster operations
areforever.

Thus, hardwiring policy and mechanism together has two bad effects; it make policy rigid and harder
to change in response to user requirements, and it means that trying to change policy has a strong
tendency to destabilize tlmechanisms.

On the other hand, by separating the two we make it possible to experiment with new policy without
breaking mechanisms. This design rule has wide application outside of the GUI context. In general, it
implies that we should look for ways to separate interfacesdragines.



One way to do this, for example, is to write your application as a libra@gerviceroutines that are

driven by an embedded scripting language, with the application flow of control written in the scripting
language rather than C. A classic example of this pattern is the Emacs editor, which uses an embedded
Lisp interpreter to control editing primitives written in C. We discuss this style of design in (h#pter
[(UserInterfaced)

Another way is to separate your application into cooperating front-end and back-end processes
communicating via a specialized application protocol seeketswe discuss this kind of design in
Chaptersb (Textuality)and6é (Multiprogramming) The front end implements policy, the back end
mechanism. The global complexity of the pair will often be far lower than that of a single-process
monolith implementing the same functions, reducing your vulnerability to bugs and lowering
life-cycle costs.

Rule of Optimization: Prototype before polishing. Get it working
before you optimizeit.

The most basic argument for prototyping first is KernighaRl&uger's;*90% of the functionality
delivered now is better than 100% of it delivered never.” Prototyping first may help keep you from
investing far too much time for margirgains.

For slightly different reasons, Donafchuth(authorof The Art Of ComputdProgramming one of the
field’s few true classics) once said “Premature optimization is the rootefill§ And he was
right.

Rushing to optimize before the bottlenecks are known may be the only error to have ruined more
designs than feature creep. From tortured code to incomprehensible data layouts, the results of
obsessing about speed or memory or disk usage at the expense of transparency and simplicity are
everywhere. They spawn innumerable bugs and cost millions of man-hours — often, just to get
marginal gains in the use of some resource much less expensive than detiongging

Disturbingly often, premature local optimization actually hinders global optimization (and hence
reduces overall performance). A prematurely optimized portion of a design frequently interferes with
changes that would have much higher payoffs across the whole design, so you end up with both
inferior performance and excessively compiexle.

In the Unix world there is a long-established and very explicit tradition (exemplified b?iRels
comments above and K@&mompson’smaxinabout brute force) that sayarototype, then polish. Get

it working before you optimize Or: Make it work first, then make it work fast. ‘Extreme
programming’ guru KenBeck,operating in a different culture, has usefully amplified this to: “Make it
run, then make it right, then makdast.”

The thrust of all these quotes is the same: get your design right with an un-optimized, slow,
memory-intensive implementation before you try to tune. Then you tune systematically, looking for
the places where you can buy big performance wins with the smallest possible increases in local
complexity.

It's worth pointing out that you don’t have to optimize what you don’t write. The most powerful
optimization tool in existence may be the delagp.



Finally, it is almost never worth doing optimizations that reduce resource use by merely a constant
factor; it's smarter to concentrate effort on cases where you can reduce average-case runtime or space
use fromO(n?) to O(n) or O(n log n), or similarly reduce from a higher order. Linear performance

gains tend to be swamped by the exponential effect of Moore’s Law — the smartest, cheapest, and
oftenfastestway to collect them is to wait a few months for your target hardware to become more
capable.

Rule of Diversity: Distrust all claims for “one true way”.

Even the best software tools tend to be limited by the imaginations of their designers. Nobody is smart
enough to optimize for everything, nor to anticipate all the uses to which their software might be put.
Designing rigid, closed software that won't talk to the rest of the world is an unhealthy form of
arrogance.

Therefore, the Unix tradition includes a healthy mistrust of “one true way” approaches to software
design or implementation. It embraces multiple languages, open extensible systems, and customization
hookseverywhere.

Rule of Extensibility: Design for the future, because it will be here
sooner than youthink.

If it is unwise to trust other people’s claims for “one true way”, it's even more foolish to believe them
about your own designs. Never assume you have theafisaler.

Therefore, leave room for your code to grow. When you write protocols or file formats, make them
sufficiently self-describing to be extensible. When you write code, organize it so future developers will
be able to plug new functions into the architecture without having to scrap and rebaiichitecture.

Make the joints flexible, and put “If you ever need to...” comments in your code. You owe this grace
to people who will use and maintain your code aftar.

You'll be there in the future too, maintaining code you may have half forgotten under the press of
more recent projects. When you design for the future, the sanity you save may benyour

¥ Jonathan Postel was the first editor of the Internet RFC series of standards, and one of the principal
architects of the Internet. A tribpagéis maintained by the Postel Center for Experimental
Networking.

[ In full:“We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.” Knuth attribites the remark to C.Adare.


http://www.postel.org/jonpostel.html

The Unix philosophy in onelesson

All the philosophy really boils down to one iron law, the halloWwd&Sprinciple’ of master
engineergverywhere:

KEEP IT SIMPLE, STUPID!

Unix gives you an excellent base for applying the KISS principle. The remainder of this book will help
you learn how to usi¢.



Applying the Unix philosophy

These philosophical principles aren't just vague generalities. In the Unix world they come straight
from experience and lead to specific prescriptions, some of which we've already developed above.
Here’s a by no means exhaustiiat:

1.

2.

8.

9.

Everything that can be a source- and destination-independenslittaldbeone.

Data streams should if at all possible be textual (so they can be viewed and filtered with standard
tools).

Database layouts and application protocols should if at all possible be textual (human-readable
andhuman-editable).

. Complex front ends (user interfaces) should be cleanly separated from complexdsck

Whenever possible, prototype in an interpretive language before ddding

Mixing languages is better than writing everything in one, if and only if using only that one is
likely to over-complicate thprogram.

. Be generous in what you accept, rigorous in whatgroii.

When filtering, never throw away information you don’t némd

Small is beautiful. Write programs that do as little as is consistent with getting ttierjeb

We'll see these prescriptions applied over and over again in the remaindetbaiotkis



Attitude matterstoo

When you see the right thing, do it — this may look like more work in the short term, but it's the path
of least effort in the long run. If you don’t know what the right thing is, do the minimum necessary to
get the job done, at least until you figure out what the right iking

To do the Unix philosophy right, you have to be loyal to excellence. You have to believe that software
design is a craft worth all the intelligence, creativity, and passion you can muster. Otherwise you
won't look past the easy, stereotyped ways of approaching design and implementation; you’ll rush into
coding when you should be thinking. Otherwise you'll carelessly complicate when you should be
relentlessly simplifying — and then you’ll wonder why your code bloats and debugginbasdso

To do the Unix philosophy right, you have to value your own time enough never to waste it. If
someone has already solved a problem once, don't let pride or politics suck you into solving it a
second time rather than re-using. And never work harder than you have to; work smarter instead, and
save the extra effort for when you need it. Lean on your tools and automate everythiag.you

Software design and implementation should be a joyous art, a kind of high-level play. If this attitude
seems preposterous or vaguely embarrassing to you, stop and think; ask yourself what you've
forgotten. Why do you design software instead of doing something else to make money or pass the
time? You must have thought software was worthy of your passioa....

To do the Unix philosophy right, you need to have (or recover) that attitude. You rezed f6ou
need tgplay. You need to be willing texplore

We hope you'll bring this attitude to the rest of this book. Or, at least, that this book will help you
rediscoveii.



Chapter 2. History

A Tale of Two Cultures
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Those who cannot remember the past are condemned to fiepeat
--George Santayandhe Life oReasor(1905)

The past informs practice. Unix has a long and colorful history, much of which is still live as folklore,
assumptions, and (too often) battle scars in the collective memory of Unix programmers. In this
chapter we'll survey the history of Unix, with an eye to explaining why, in 2003, today’s Unix culture
looks the way itloes.



Origins and history of Unix, 1969-1995
Genesis:1969-1971

Unix was born in 1969 out of the mind of a computer scientist atBbbratoriesKen Thompson.
Thompson had been a researcher on the pioneering MULTICS project, an attempt to create an
‘information utility’ that would gracefully support interactive time-sharing of mainframe computers by
large communities of users. The concept of time-sharing was still a novel one in the late 1960s; the
first speculations on it had been uttered barely ten years earlier by computer scientist John McCarthy
(also the inventor of theisplanguage)the first actual deployment had been in 1962 seven years
earlier, and time-sharing operating systems were still experimental and temperbeestsl

Computer hardware was at that time more primitive than even people who were there to see it can now
easily recall. The most powerful machines of the day had less computing power and internal memory
than a typical cellphone of today (though that comparison is a bit misleading in that they had mass
storage and I/O capacity that cellphones don'’t). Video display terminals were in their infancy and

would not be widely deployed for another six years. The standard interactive device on the earliest
timesharing systems was the ASR-33 teletype — a slow, noisy device that printed upper-case-only on
big rolls of yellow paper. The ASR-33 was the natural parent of the Unix tradition of terse commands
and sparseesponses.

When Bell Labs withdrew from the MULTICS research consortium, Ken Thompson was left with
some MULTICS-inspired ideas about how to build a filesystem. He was also left without a machine on
which to play a game he had written called Space Travel, a science-fiction simulation that involved
navigating a rocket through the solar system. Unix began its life on a scavenged

PDP-7minicomputdfl , as a platform for the Space Travel game and a testbed for Thompson’s ideas
about operating systedesign.



T T

ThePDP-7.

The full origin story is told iffRitchie79] from the point of view of Thompson’s first collaborator

Dennis Ritchie, the man who would become known as the co-inventor of Unix and the inventor of the
C language. Dennis Ritchie, Dougldl€llroy and a few colleagues had become used to interactive
computing under MULTICS and did not want to lose that capability. Thompson’s PDP-7 operating
system offered themldeline.



Ritchie observes: “What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew from experience that the
essence of communal computing, as supplied by remote-access, time-shared machines, is not just to
type programs into a terminal instead of a keypunch, but to encourage close communication.” The
theme of computers being viewed not merely as logic devices but as the nuclei of communities was in
the air; 1969 was also the year the ARPANET (the direct ancestor of today’s Internet) was invented.
The theme of “fellowship” would resonate all through Unix’s subseduistury.

Thompson and Ritchie’s Space Travel implementation attracted notice. At first, the PDP-7’s software
had to be cross-compiled on a GE mainframe. The utility programs that Thompson and Ritchie wrote
to support hosting game development on the PDP-7 itself became the core of Unix — though the name
did not attach itself until 1970. The original spelling was “UNICS” (Uniplexed Information &

Computing Service, which Ritchie later described as “a somewhat treacherousNULBICS”).

Even at its earliest stages, PDP-7 Unix bore a strong resemblance to today’s Unixes — and provided a
rather more pleasant programming environment than was available anywhere else in those days of
card-fed batch mainframes. Unix was very close to being the first system under which a programmer
could sit down directly at a machine and compose programs on the fly, exploring possibilities and
testing as he went. Unix’s pattern of growing more capabilities by attracting highly skilled volunteer
efforts from programmers impatient with the limitations of existing operating systems was set early,
within Bell Labsitself.

The Unix tradition of lightweight development and informal methods also began at its beginning.
Where MULTICS had been a large project with thousands of pages of technical specifications written
before the hardware arrived, the first running Unix code was brainstormed by three people and
implemented by KeffThompsonin two days — on an obsolete machine that had been designed to be a
graphics terminal for a ‘reatomputer.

Unix’s first real job, in 1971, was to support what would now be called word processing for the Bell

Labs patent department; the first Unix application was the ancestor of the nroff(1) text formatter. This
project justified the purchase oP®P-11,a much more capable minicomputer. Management

remained blissfully unaware that the word-processing system that Thompson and colleagues were
building was incubating an operating system. Operating systems were not in the Bell Labs plan —
AT&T had joined the MULTICS consortium precisely in order to avoid doing an operating system on

its own. Nevertheless, the completed system was a rousing success. It established Unix as a permanent
and valued part of the computing ecology at Bell Labs, and began another theme in Unix’s history — a
close association with document-formatting, typesetting, and communications tools. The 1972 manual
claimed 1Q0nstallations.

Later, DougMcllroy would write of this periofiMcllroy91]} “Peer pressure and simple pride in
workmanship caused gobs of code to be rewritten or discarded as better or more basic ideas emerged.
Professional rivalry and protection of turf were practically unknown: so many good things were
happening that nobody needed to be proprietary about innovations.” It would take another quarter
century for all the implications of that observation to cérome.

Exodus: 1971-1980

The original Unix operating system was written in assembler, and the applications in a mix of
assembler and an interpreted language called B, which had the virtue that it was small enough to run
on thePDP-7.But B was not powerful enough for systems programming, so Dennis Ritchie added
data types and structures to it. The resultingr@guagesvolved from B beginning in 1971; in 1973



Thompson and Ritchie finally succeeded in rewriting Unix in their new language. This was quite an
audacious move at the time; system programming was done in assembler in order to extract maximum
performance from the hardware, and the very concept of a portable operating system was barely a
gleam in anyone’s eye. As late as 19RRBchie could write “It seems certain that much of the success

of Unix follows from the readability, modifiability, and portability of its software that in turn follows

from its expression in high-level languages.”, in the knowledge that this was a point that still needed
making.

Ritchie and Thompson (seated) at a PDP-119ir2.

A 1974 paper irCommunications of thaCM[[Ritchie74] gave Unix its first public exposure. In that
paper, its authors described the unprecedentedly simple design of Unix, reported over 600 Unix
installations. All were on machines underpowered even by the standards of that day, but (as Ritchie
and Thompson wrote) “constraint has encouraged not only economy, but also a certain elegance of
design.”

| read the CACM paper when | was sixteen years old and was delighted by its
elegance and simplicity. | was an aspiring mathematician then, and had no idea
that Unix would develop into the theme of my professional life.

--Eric S.Raymond



After the CACM paper, research labs and universities all over the world clamored for the chance to try
out Unix themselves. Under a 1958 consent decree in settlement of an antitrust casé¢h&parent
organization of Bell Labs) had been forbidden from entering the computer business. Unix could not,
therefore, be turned into a product — indeed, under the terms of the consent degree Bell Labs was
required to license its non-telephone technology to anyone who aske@ih&psonquietippegan
answering requests by shipping out tapes and disk packs — each, legendarily, with a note signed
“love, ken”.

This was years before personal computers; not only was the hardware needed to run Unix too
expensive to be within an individual’s reach, but nobody imagined that would change in the forseeable
future. So Unix machines were only available by the grace of big organizations with big budgets —
corporations, universities, government agencies. But use of these machines was less regulated than the
big mainframes, and Unix development rapidly took on a countercultural air. It was the early 1970s;
the pioneering Unix programmers were shaggy hippies and hippie-wannabes. They delighted in an
operating system that not only offered them fascinating challenges at the leading edge of computer
science, but subverted all the technical assumptions and business practices that went with Big
Computing. Card punches, COBOL, business suits, and lt¢mainframes were the despised old
wave; Unixhackergeveled in the sense that they were simultaneously building the future and flipping
a finger at thesystem.

The excitement of those days is captured in this quote from Douglas Comer: “Many universities
contributed to UNIX. At the University of Toronto, the department acquired a 200-dot-per-inch
printer/plotter and built software that used the printer to simulate a phototypesetter. At Yale
University, students and computer scientists modified the UNIX shell. At Purdue University, the
Electrical Engineering Department made major improvements in performance, producing a version of
UNIX that supported a larger number of users. Purdue also developed one of the first UNIX computer
networks. At the University of California at Berkeley, students developed a new shell and dozens of
smaller utilities. By the late 1970s, when Bell Labs released Version 7 UNIX, it was clear that the
system solved the computing problems of many departments, and that it incorporated many of the
ideas that had arisen in universities. The end result was a strengthened system. A tide of ideas had
started a new cycle, flowing from academia to an industrial laboratory, back to academia, and finally
moving on to a growing number of commercial sitf€8mer]

The first Unix of which it can be said that essentially all of it would be recognizable to a modern Unix
programmer was that Version 7 release in 1978. The first Unix user group had formed the previous
year. By this time Unix was in use for operations support all through the Bell Siysaeimen] and

had spread to universities as far away as Australia, where John Lions’s 1976 notes on the Version 6
source code became the first (and for years afterwards the only) Unix kernel documentation not tied to
a Bell Labdicense.

The beginnings of a Unix industry were coalescing as well. The first Unix company (the ‘Santa Cruz
Operation’, SCO) began operations in 1978, and the first comme€rc@hpiler (Whitesmiths) sold

that same year. By 1980 an obscure software company in Seattle was also getting into the Unix game
— shipping a port of thAT&T version for microcomputers called XENIX. BMicrosoft'saffection

for Unix as a product was not to last very long (though it would continue to be used for most internal
development work until aftet990).



TCP/IP and the Unix Wars: 1980-1990

TheBerkeleycampusf the University of California emerged early as the single most important
academic hot-spot in Unix development. Unix research had begun there in 1974, and was given a
substantial impetus when K&mompsortaught at the University during a 1975-76 sabbatical. The
first BSDreleasehad been in 1977 from a lab run by a then-unknown grad student naméalyBay
1980 Berkeley was the hub of a sub-network of universities actively contributing to their variant of
Unix. Ideas and code from Berkeley Unix (including the véditor) were feeding back from

Berkeley to Bell Labs. The Berkeley Unix hackers also ported Unix to the hottest of the new
minicomputers, the DERAX.

Then, in 1980, the Defense Advanced Research Projects Agency needed a team to implement its brand
new TCP/IPprotocol stack on the VAX under Unix. TR®P-10shat powered the ARPANET at that

time were aging, and indications that DEC might be forced to cancel the 10 in order to support the

VAX were already in the air. DARPA considered contracting DEC to implef@RtIP,but rejected

that idea because they were concerned that DEC might not be responsive to requests for changes in
their proprietary VAX/VMS operating systeffiLibes&Resslel]

Berkeley’'sComputeBcience Research Group was in the right place at the right time with the strongest
development tools; the result became arguably the most critical turning point in Unix’s history since
its invention.

Until the TCP/IPimplementatiomvas released witBerkeley4.2 in 1983, Unix had had only the

weakest networking support. Early experiments with Ethernet were unsatisfactory. An ugly but
serviceable facility called UUCP (Unix to Unix Copy Program) had been developed at Bell Labs for
distributing software over conventional telephone lines via mdflertyUCP could forward Unix

mail between widely separated machines, and (after Usenet was invented in 1981) sulsentéd
distributed bulletin-board facility that allowed users to broadcast text messages to anywhere that had
phone lines and Unigystems.

Still, the few Unix users aware of the bright lights of the ARPANET felt like they were stuck in a
backwater. No FTP, no telnet, only the most restricted remote job execution, and painfully slow links.
BeforeTCP/IP,the Internet and Unix cultures did not mix. DerRitchie’svisionof computers as a

way to “encourage close communication” was one of collegial communities clustered around
individual timesharing machines or in the same computing center; it didn’t extend to the
continent-wide distributed ‘network nation’ that ARPA users had started to form in the mid-1970s.
Early ARPAnetters, for their part, considered Unix a crude makeshift limping along on risibly weak
hardware.

After TCP/IP,everything changed. The ARPANET and Unix cultures began to merge at the edges, a
development that would eventually save both from destruction. But there would be hell to pay first as
the result of two unrelated disasters; the ris®liafosoft and theAT&T divestiture.

In 1981, Microsoft made its historic deal wiBM over the new IBM PC. Bill Gates bought QDOS

(Quick and Dirty Operating System), a clone of CP/M that its programmer Tim Paterson had thrown
together in six weeks, from Paterson’s employer Seattle Computer Products. Gates, concealing the
IBM deal from Paterson and SCP, bought the rights for $50,000. He then talked IBM into allowing
Microsoft to market MS-DOS separately from the PC hardware. Over the next decade, code he didn’t
write made Bill Gates a multibillionaire, and business tactics even sharper than the original deal gained
Microsoft a monopoly lock on desktop computing. XENIX as a product was rapidly deep-sixed, and
eventually sold t&CO.



It was not apparent at the time how successful (or how destrudiime)soft was going to be. Since

the IBM PC-1 didn't have the hardware capacity to run Unix, Unix people barely noticed it at all
(though, ironically enough, DOS 2.0 eclipsed CP/M largely because Microsoft's cofounder Paul Allen
merged in Unix features including subdirectories pipe&s).There were things that seemed much

more interesting going on — like the 1982 launching of Migrosystems.

SunMicrosystemdounders BillJoy, Andreas Bechtolsheim and Vinod Khosla set out to build a

dream Unix machine with built-in networking capability. They combined hardware designed at
Stanford with the Unix developed at Berkeley to produce a smashing success, and founded the
workstation industry. At the time, nobody much minded that one branch of the Unix tree had become a
proprietary product with no source code availaBlrkeleywasstill distributingBSD with source

code. Officially, Systentll source licenses cost $40,000 each; but Bell Labs was turning a blind eye to
the number of bootleg Bell Labs Unix tapes in circulation, the universities were still swapping code
with Bell Labs, and it looked lik8un’scommercializationf Unix might just be the best thing to

happen to iyet.

1982 was also the year thafirst showed signs of establishing itself outside the Unix world as the
systems-programming language of choice. It would only take about five ye&$dfarive machine
assemblers almost completely out of use. By ten years later Ctangould dominate not only

systems but application programming, and fifteen years out other conventional compiled languages
would be effectivelybsolete.

When DEC cancelled development on Bi2P-10'ssuccessor machine (Jupiter) in 1983, VAXes

running Unix began to take over as the dominant Internet machine, a position they would hold until
being displaced by SumorkstationsWithin a few years around 25% of all VAXes would be running
Unix despite DEC's stiff opposition. But the longest-term effect of the Jupiter cancellation was a less
obvious one; the death of the MIT Al Lab’s PDP-10-centered hacker culture motivated a programmer
named Richar&tallmantobegin writingGNU, a complete free clone bhix.

By 1983 there were also no fewer than six Unix-workalike operating systems for the IBM-PC;
uNETix, Venix, Coherent, QNX. Idris, and the port hosted on the Sritek daughtercard. There was still
no port of real Unix in either the Systafmor BSD versions, — both groups considered the 8086
microprocessor woefully underpowered and wouldn’t go near it. None of the Unix-workalikes were
significant as commercial successes, but they indicated a significant demand for Unix on cheap
hardware that the major vendors were not supplying. No individual could afford to meet it, either, not
with the $40,000 pricetag on a source-chiciense.

Sunwasalready a success (with imitators!) when, in 1983, the U.S. Department of Justice won its
second antitrust case agaiASi&T and broke up the Bell System. This relieved AT&T from the 1958
consent decree that had prevented them from turning Unix into a product. AT&T promptly rushed to
commercialize Unix System V — a move that nearly killdx.

Most Unix boosters thought that tHaestiturewas great news. We thought we saw in the
post-divestiture AT&T, SuMicrosystemsand Sun’s smaller imitators the nucleus of a healthy Unix
industry — one that, using inexpensive 68000-based workstations, would challenge and eventually
break the oppressive monopoly that then loomed over the computer indud3iv’s-

What none of us realized at the time was that the productization of Unix destroyed the free exchanges
of source code that had nurtured so much of the system’s early vitality. Knowing no other model than
secrecy for collecting profits from software and no other model than centralized control for developing
a commercial product, AT&T clamped down hard on source-code distribution. Bootleg Unix tapes
became far less interesting in the knowledge that the threat of lawsuit might come with them.



Contributions from universities began to dy.

To make matters worse, the big new players in the Unix market promptly committed major strategic
blunders. One was to seek advantage by product differentiation — which resulted in the interfaces of
different Unixes diverging. This threw away cross-platform compatibility and fragmented the Unix
market.

The other, subtler error was to behave as if personal computekéi@odoft were irrelevant to

Unix’s prospects. Sullicrosystemsfailedo see that PCs would inevitably become an attack on its
workstation market from belovAT&T fixated on minicomputers and mainframes, tried several
different strategies to become a major player in computers, and executed all of them very badly. A
dozen small companies formed to support Unix on PCs; all were underfunded, focused on selling to
developers and engineers, and never aimed at the business and home market that Microsoft was
targeting.

In fact, for years after divestiture the Unix community was preoccupied with the first phase of the

Unix wars— an internal dispute, the rivalry between Systekdnik and BSDUnix. The dispute had

several levels, some technical (sockets vs. stréB8i3tty vs System V termio) and some cultural.

The divide was roughly longhairs-vs.-shorthairs; programmers and technical people tended to line up
with Berkeley andBSD, more business-oriented types with AT&T and Systérifhe longhairs,

repeating a theme from Unix’s early days ten years before, liked to see themselves as rebels against a
corporate empire; one of the small companies put out a poster showing an X-wing-like space fighter
marked “BSD” speeding away from a huge AT&T ‘death star’ logo left broken and in flames. Thus we
fiddled while Roméburned.

But something else happened in the year of the AT&T divestiture that would have more long-term
importance for Unix. A programmer/linguist named Larry Wall quietly invented the patch(1) utility.
Patch, a simple tool that applies changebars generated by diff(1) to a base file, meant that Unix
developers could cooperate by passing around patch sets — incremental changes to code — rather
than entire code files. This was important not only because patches are less bulky than full files, but
because patches would often apply cleanly even if much of the base file had changed since the
patch-sender fetched his copy. With this tool, streams of development on a common source code could
diverge, run in parallel, and re-converge. Patch did more than any other single tool to enable
collaborative development over the Internet — a method which would revitalize Unit @®@r

In 1985 Intel shipped the first 386 chip, capable of paging 4 gigabytes of memory with a flat address
space. The clumsy segment addressing of the 8086 and 286 were immediately obsolete. This was big
news, because for the first time a microprocessor in the dominant Intel family had the capability to run
Unix without painful compromises. The handwriting was on the walbtorand the other

workstation makers. They failed to see

1985 was also the year that Rich&tdllmanissuethe GNU manifestffStallman]and launched the

Free Software Foundation. Very few people took him oGN&Jprojectseriously, a judgment which

turned out to be a severe mistake. In an unrelated development of the same year, the originators of the
X window system released it as source code without royalties, restrictions, or license code. As a direct
result of this decision, it became a safe neutral area for collaboration between Unix vendors, and
defeated proprietary contenders to become Unix’s graphigise.

Serious standardization efforts aimed at reconciling the SygtandBerkeleyAPIs also began in

1985 with the firsPOSIX standards, an effort backed by the IEEE. These described the intersection
set of theBSD and SVR3 (System V Relea3gcalls, with the superior Berkeley signal handling and
job control but with SVR3 terminal control. All later Unix standards would incorporate a POSIX core,



and later Unixes would adhere to it closely, The only major addition to the modern Unix kernel API to
come afterwards was BSfockets.

In 1986 LarrnyWall, previously the inventor of patch(1), began workRaml, which would become the

first and most widely used of the open-source scripting languages. In early 1987 the first version of the
GNU C compilerappeared, and by the end of 1987 the core of the GNU toolset was falling into place
— editor, compiler, debugger, and basic development tools. Meanwhileydéwswas beginning to

show up on relatively inexpensive workstations. Together, these would provide the armature for the
open-source Unix developments of ##90s.

1986 was also the year that PC technology broke free of IBM’sIBiif,. still trying to preserve a
price-vs.-power curve across its product line that would favor its high-margin mainframe business,
rejected the 386 for most of its new line of PS/2 computers in favor of the weaker 286. The PS/2
series, designed around a proprietary bus architecture to lock out clonemakers, became a colossally
expensive failure. Compaq, the most aggressive of the clonemakers, trumped IBM’s move by releasing
the first 386 machine. Even with a clock speed of a mere 16MHz, the 386 made a tolerable Unix box.

It was the first PC of which that could baid.

It was beginning to be possible to imagine ®B&liman’sGNU projectmight mate with 386 machines

to produce Unix workstations almost an order of magnitude less costly than anyone was offering.
Curiously, no one seems to have actually got this far in their thinking. Most Unix programmers,

coming from the minicomputer and workstation worlds, continued to disdain cheap 80x86 machines in
favor of more elegant 68000-based designs. And, though a lot of programmers contributed to the GNU
project,among Unix people it tended to be considered a quixotic gesture that was unlikely to have
near-term practicalonsequences.

| feel pretty stupid about this in retrospect. | was a little foresighted on the
hardware side; | predicted publicly in 1987 that 386-based Intel machines running
Unix would best the 68000 boxes and swamp the workstation industry. But, in
spite of having been personally acquainted with Stallman for over ten years and
an early GNU contributor myself, | missed the potential synergy with the GNU
project as completely as everybaglge.

--Eric S.Raymond

The Unix community had never lost its rebel streak. But in retrospect, we were nearly as blind to the
future bearing down on us M or AT&T. Not even Richar&tallmanwho had declared a moral
crusade against proprietary software a few years before, really understood how badly the
productization of Unix had damaged the community around it; his concerns were with more abstract
and long-term issues. The rest of us kept hoping that some clever variation on the corporate formula
would solve the problems of fragmentation, wretched marketing, and strategic drift, and redeem
Unix’s pre-divestiturgoromise.But worse was still taome.

1988 was the year Ken Olsen (CEO of DEC) famously described Unix as “snake oil”. DEC had been
shipping its own variant of Unix dADP-11ssince 1982, but really wanted the business to go to its
proprietary VMS operating system. DEC and the minicomputer industry was in deep trouble,
swamped by waves of powerful low-cost machines coming out oMsmsystemsand the rest of

the workstation vendors. Most of those workstationd_haix.

But the Unix industry’s own problems were growing more severe. In 1988 AT&T took a 20% stake in
Sun Microsystems. These two companies, the leaders in the Unix market, were beginning to wake up
to the threat posed by PCs, IBM, and Microsoft, and to realize that the preceding five years of



bloodletting had gained them little. The AT&T/Sun alliance and the development of technical
standards aroun@dOSIXeventually healed the breach between the Systeamd BSDUnix lines. But
the second phase of the Unwarsbegan when the second-tier venddBM, DEC, Hewlett-Packard,
and others) formed the Open Software Foundation and lined up against the AT&T/Sun axis
(represented by Unix International). More rounds of Unix fighting @nisued.

Meanwhile,Microsoft was making billions in the home and small-business markets that the warring
Unix factions had never found the will to address. The 1990 release of Windows 3.0 — the first
successful graphical operating system from Redmond — cemented Microsoft's dominance, and
created the conditions that would allow them to flatten and monopolize the market for desktop
applications in thd990s.

1989 to 1993 were the darkest years in Unix’s history. It appeared then that all the dreams had failed.
Internecine warfare had reduced the proprietary Unix industry to a squabbling shambles that never
summoned either the determination or the capability to challenge Microsoft. Motorola’s elegant
architectures had lost out to Intel’s ugly but inexpensive processors. TheBctfailed to

produce the free Unix kernel it had been promising since 1983, and after nearly a decade of excuses its
credibility was beginning to wear thin. PC technology was being relentlessly corporatized. The
pioneering Unixhackersof the 1970s were hitting middle age and slowing down. Hardware was

getting cheaper but Unix was still too expensive. We were belatedly becoming aware that the old
monopoly ofIBM had yielded to a newer monopolyMicrosoft, and Microsoft’s excruciatingly bad
software was rising around us like a tidesefvage.

Blows against the empire:1991-1995

The first glimmer of light in the darkness was the 1990 effort by William Jolitz tdB&itonto a 386

box, publicized by a series of magazine articles beginning in 1991. This was possible because, partly
influenced byStallman Berkeleyhacker KeithBostichadoegun an effort to clean AT&T proprietary

code out of the BSD sources in 1988. The project took a blow when, near the end of 1991, Jolitz
walked away from the project and destroyed his own work. There are conflicting explanations, but a
common thread in all is that Jolitz wanted his code to be released as unencumbered source and was
upset when BSDI opted for a more proprietary licensiioglel.

In August 1991 Linu§orvalds,then an unknown university student from Finland, announced the
Linux project. Torvalds is on record that one of his main motivations was the high &ust'etnix

at his university — also, that he would have joinedBB® effort had he known of it, rather than
founding his own. But 386BSD was not shipped until early 1992, some months after the first Linux
release.

The importance of both these projects became clear only in retrospect. At the time, they attracted little
notice even within the Internet hacker culture — let alone in the wider Unix community, which was

still fixated on more capable machines than PCs, and on trying to reconcile the special properties of
Unix with the conventional proprietary model of a softwausiness.

It would take another two years and the great Internet explosion of 1993-1994 before the true
importance otf.inux and theopen-sourceBSM@istributions became evident to the rest of the Unix

world. Unfortunately for the BSDers, &T&Tlawsuit against BSDI (the startup company that had
backed the Jolitz port) consumed much of that time and motivated sorBet&yeydevelopers to

switch to Linux. Matters were not helped when, in 1992-94, the Computer Science Research Group at
Berkeleyshutdownand factional warfare within the BSD community caused it to split into three
competing development efforts. As a result, the BSD lineage lagged thémirxdat a crucial time and



lost to it the lead position in the Uncommunity.

TheLinux andBSD development efforts were native to the Internet in a way previous Unixes had not
been. They relied on distributed development and Larry Wall's patch(1) tool, and recruited developers
via email and througblsenetnewsgroups. Accordingly, they got a tremendous boost when Internet
Service Provider business began to proliferate in 1993. This change was enabled by changes in
telecomm technology and the privatization of the Internet backbone that are outside the scope of this
history. The demand for cheap Internet was created by something else — the 1991 invention of the
World Wide Web. The Web was the “killer app” of the Internet, the graphical user interface
technology that made it irresistible to a huge population of non-technicakersl

The mass-marketing of the Internet both increased the pool of potential developers and lowered the
transaction costs of distributed development. The results were reflected in efforts like XFree86, which
used the Internet-centric model to build a more effective development organization than the official X
Consortium’s.The first XFree86 in 1992 gakénux and theBSDsthe graphical-user-interface engine

they had been missing. Over the next decade XFree86 would lead in X development, and an increasing
portion of the X Consortium’s activity would come to consist of funneling innovations originated in

the XFree86 community back to the Consortium’s indusspahsors.

By late 1993 inux had both Internet capability add The entire GNU toolkit had been hosted on it
from the beginning, providing high-quality developmtrls. Beyond GNU toolsl.inux acted as an

basin of attraction, collecting and concentrating twenty years of open-source software that had
previously been scattered across a dozen different proprietary Unix platforms. Though the Linux
kernel was still officially in beta (at 0.99 level), it was remarkably crash-free. The breadth and quality
of the software irLinux distributions was already that of a production-ready operayisigm.

A few of the more flexible-minded among old-school Unix developers began to notice that the
long-awaited dream of a cheap Unix box for everybody had snuck up on them from an unexpected
direction. It didn't come froM\T&T or Sunor any of the traditional vendors. Nor did it rise out of an
organized effort in academia. It was a bricolage that bubbled up out of the Internet by what seemed
like spontaneous generation, appropriating and recombining elements of the Unix tradition in
surprisingways.

Elsewhere, corporate maneuvering contindd& T divested its interest in Sun in 1992; then sold its
Unix Systems Laboratories to Novell in 1993; Novell handed off the Unix trademark to the X/Open
standards group in 1994; AT&T and Novell joined OSF in 1994, finally ending thew#msIn 1995

SCO bought UnixWare (and the rights to the original Unix sources) from Novell. In 1996, X/Open and
OSF merged, creating one big Unix standagrmsip.

But the conventional Unix vendors and the wreckage of their wars came to seem steadily less and less
relevant. The action and the energy in the Unix community were shiftliigug andBSD and
open-sourcedevelopey the timelBM, Intel, and SCO announced the Monterey project in 1998 —

a last-gasp attempt to merge One Big System out of all the proprietary Unixes left standing —
developers and the trade press reacted with amusement, and the project lasteg/arely a

The industry transition could not be said to have completed until 2000, when SCO sold UnixWare and
the original Unix source-code base to Caldera — a Linux distributor. But after 1995, the story of Unix
became the story of the open-source movement. There’s another side to that story; to tell it, we’ll need
to return to 1961 and the origins of the Internet haclture.



¥ There is a web FAQ on tffDPcomputerithat explains the otherwise extremely obscure PDP-7's
place inhistory.

[ This was when g&astmodem was 30Paud.


http://www.faqs.org/faqs/dec-faq/pdp8/

Origins and history of the hackers,1961-1995

The Unix tradition is an implicit culture that has always carried with it more than just a bag of
technical tricks. It transmits a set of values about beauty and good design; it has legends and folk
heroes. Intertwined with the history of the Unix tradition is another implicit culture that is more
difficult to label neatly. It has its own values and legends and folk heroes, partly overlapping with
those of the Unix tradition and partly derived from other sources. It has most often been called the
“hacker culture”, and since 1998 has largely coincided with what the computer trade press calls “the
open sourcenovement”.

The relationships between the Unix tradition, the hacker culture, and the open-source movement are
subtle and complex. They are not simplified by the fact that all three implicit cultures have frequently
been expressed in the behaviors of the same human beings. But since 1990 the story of Unix is largely
the story of how the open-source hackers changed the rules and seized the initiative from the old-line
proprietary Unix vendors. Therefore, the other half of the history behind today’s Unix is the history of
thehackers.

At play in the groves of academet961-1980

The roots of the hacker culture can be traced back to 1961, the year MIT took delivery of its first
PDP-1minicomputerThe PDP-1 was one of the earliest interactive computers, and unlike other
machines of the day was inexpensive enough that time on it did not have to be rigidly scheduled. It
attracted a group of curious students from the Tech Model Railroad Club who experimented with it in
a spirit of fun.Hackers: Heroes of the Compufevolutiof[Levy]| entertainingly describes the early
days of the club. Their most famous achievement was SPACEWAR, a game of dueling rocketships
loosely inspired by theensmarspace operas of E.E. “Do8mith.

Several of the TMRC experimenters later went on to become core members of the MIT Atrtificial
Intelligence Lab, which in the 1960s and 1970s became one of the world centers of cutting-edge
computer science. They took some of TMRC's slang and in-jokes with them, including a tradition of
elaborate (but harmless) pranks called “hacks”. The Al Lab programmers appear to have been the first
to describe themselves ‘dmckers”.

After 1969 the Al lab was connected, via the early ARPANET, to other leading computer science
research laboratories at Stanford, Bolt Beranek & Newman, Carnegie-Mellon University and
elsewhere. Researchers and students got the first foretaste of the way fast network access abolishes
geography, often making it easier to collaborate and form friendships with distant people on the net
than it would be to do likewise with the closer-by but Emsnected.

Software, ideas, slang, and a good deal of humor flowed over the experimental ARPANET links.
Something like a shared culture began to form. One of its earliest and most enduring artifacts was the
Jargon File, a list of shared slang terms that originated at Stanford in 1973 and went through several
revisions at MIT after 1976. Along the way it accumulated slang from CMU, Yale, and other
ARPANET sites.

Technically, the early hacker culture was largely hosted on PDRiriGomputersThey used a

variety of operating systems that have since passed into history: TOPSR8;20 MULTICS, ITS,
SAIL. They programmed in assembler and dialectsgg. They took over running the ARPANET
itself because nobody else wanted the job. Later, they became the founding cadre of the Internet
Engineering Task Ford¢ETF) and originated the tradition of standardization through Requests For
CommentRFCs).



Socially, they were young, exceptionally bright, almost entirely male, dedicated to programming to the
point of addiction, and tended to have streaks of stubborn nonconformism — what years later would

be called ‘geeks’. They, too, tended to be shaggy hippies and hippie-wannabes. They, too, had a vision
of computers as community-building devices. They read Robert Heinlein and J.R.R. Tolkien, played in
the Society for Creative Anachronism, and tended to have a weakness for puns. Despite their quirks
(or perhaps because of them!) many of them were among the brightest programmensitdthe

They werenot Unix programmers. The early Unix community was drawn largely from the same pool

of geeks in academia and government or commercial research laboratories, but the two cultures
differed in important ways. One that we've already touched on is the weak networking of early Unix.
There was effectively no Unix-based ARPANET access until after 1980, and it was uncommon for any
individual to have a foot in bottamps.

Collaborative development and the sharing of source code was a valued tactic for Unix programmers.
To the early ARPANET hackers, on the other hand, it was more than a tactic — it was something
rather closer to a shared religion, partly arising from the academic “publish or perish” imperative and
(in its more extreme versions) developing into an almost Chardinist idealism about networked
communities of minds. The most famous of these hackers, RichéthNMnan,became the ascetic

saint of thareligion.

Internet fusion and the Free Software Movementi981-1991

After 1983 and th&SD port of TCP/IP,the Unix and ARPANET cultures began to fuse together. This
was a natural development once the communication links were in place, since both cultures were
composed of the same kind of people (indeed, in a few but significant casamégeople).

ARPANET hackers learneédandbegan to speak the jargon of pipes, filters and shells; Unix
programmers learnedCP/IPand started to call each other “hackers”. The process of fusion was
accelerated after the Project Jupiter cancellation in 1983 killdéDiRe10'sfuture. By 1987 the two

cultures had merged so completely that most hackers programmed in C and casually used slang terms
that went back to the Tech Model Railroad Club of twenty-five yearer.

In 1979 the fact that | had strong ties to both the Unix and ARPANET cultures
made me pretty unusual. In 1985 that wasn’t unusual any more. By the time |
expanded the old ARPANET Jargon File into Mewv Hacker'Dictionary
[Raymond91jin 1991, the merger was done. The Jargon File, born on the
ARPANET but revised ollsenetsimply reflectedhis.

--Eric S.Raymond

But TCP/IP networking and slang were not the only things the post-1980 hacker culture inherited from
its ARPANET roots. It also got Richaftallman,and Stallman’s morairusade.

Richard M.Stallman(generally known by his login name, RMS) had already proved he was one of the
most able programmers alive by the late 1970s at the MIT Al Lab. Among his many inventions was
the Emacs editor. For RMS, the Jupiter cancellation in 1983 only finished a breakup of the Al Lab
culture that had begun years earlier as many of its best went off to help run competing Lisp-machine
companies. RMS felt ejected from a hacker Eden, and decided that proprietary softwarklaras.to

In 1983 Stallman founded the GNidoject,aimed at writing an entire free operating system. Though
Stallman was not and had never been a Unix programmer, under post-1980 conditions implementing a
Unix-like operating system became the obvious strategy to pursue. Most of RMS’s early contributors
were old-time ARPANET hackers newly decanted into Unix-land, in whom the ethos of code-sharing



ran rather stronger than it did among those with a more Unix-centered background.

In 1985, RMS published the GNU Manifesto. In it he consciously created an ideology out of the
values of the pre-1980 ARPANET hackers — complete with a novel ethico-political claim, a
self-contained and characteristic discourse, and an activist plan for change. RMS aimed to knit the
diffuse post-1980 community of hackers into a coherent social machine for achieving a single
revolutionary purpose. His behavior and rhetoric half-consciously echoed Karl Marx’s attempts to
mobilize the industrial proletariat against the alienation of therk.

RMS’s manifesto ignited a debate that is still live in the hacker culture today — because its program
went way beyond maintaining a codebase, and essentially implied the abolition of intellectual-property
rights in software. In pursuit of this goal, RMS popularized the term “free software”, which was the
first attempt to label the product of the entire hacker culture. He wrote the General Public License
(GPL), which was to become both a rallying point and a focus of great controversy, for reasons we
will examine in Chaptdt4 (Re-Use)) The reader can learn more about RMS's position and the Free

Software Foundation at tf@NU websit¢

The term “free software”; was partly a description and partly an attempt to define a cultural identity

for hackers. On one level, it was quite successful. Before RMS, people in the hacker culture

recognized each other as fellow-travellers and used the same slang, but nobody bothered arguing about
what a ‘hacker’ is or should be. After him, the hacker culture became much more self-conscious; value
disputes (often framed in RMS'’s language even by those who opposed his conclusions) became a
normal feature of debate. RMS, a charismatic and polarizing figure, himself became so much a culture
hero that by the year 2000 he could hardly be distinguished from his Iégeadis InFreedom

Williams]| gives us an excellepbrtrait.

RMS’s arguments influenced the behavior even of many hackers who remained skeptical of his
theories. In 1987, he persuaded the caretakers oflB®HDthat cleaning out AT&T’s proprietary code

so they could release an unencumbered version would be a good idea. However, despite his
determined efforts over more than fifteen years, the post-1980 hacker culture never unified around his
ideologicalvision.

Other hackers were rediscovering open, collaborative development without secrets for more
pragmatic, less ideological reasons. A few buildings away from Richard Stallman’s 9th-floor office at
MIT, the X developmenttearthrived during the late 1980s. It was funded by Unix vendors who had
argued each other to a draw over the control and intellectual-property-rights issues surrounding X
windows, and saw no better alternative than to leave it free to everyone. In 1987-1988 the X
development prefigured the really huge distributed communities that would redefine the leading edge
of Unix five yeardater.

X was one of the first large-scale open-source projects to be developed by a
disparate team of individuals working for different organizations spread across the
globe. E-mail allowed ideas to move rapidly among the group so that issues could
be resolved as quickly as necessary, and each individual could contribute in
whatever capacity suited them best. Software updates could be distributed in a
matter of hours, enabling every site to act in a concerted manner during
development. The net changed the way software coulidbeloped.

--Keith Packard


http://www.gnu.org/

The X developers were no partisans of the GNU mataer, but they weren’t actively opposed to it,

either. Before 1995 the most serious opposition to the @ldidcame from th&SD developers. The

BSD people,who remembered that they had been writing freely redistributable and modifiable
software under the BSD license years before RMS’s manifesto, rejected GNU’s claim to historical and
ideological primacy. They specifically objected to the infectious or “viral” property of the GPL,

holding out the BSD license as being “more free” because it placed fewer restrictions on the re-use of
code.

It did not help RMS’s case that, although his Free Software Foundation had produced most of the rest
of a full software toolkit, it failed to deliver the central piece. Ten years after the founding of the GNU
project,there was still no GNU kernel. While individual tools like Emacs and GCC proved
tremendously useful, GNU without a kernel neither threatened the hegemony of proprietary Unixes
nor offered an effective counter to the rising problem oMi@osoft monopoly.

After 1995 the debate over RMS’s ideology took a somewhat different turn. Opposition to it became
closely associated with both Lintisrvaldsand the author of thisook.

Linux and the pragmatist reaction:1991-1998

Linus Torvaldsneatly straddled the GPL/anti-GPL divide by using the GNU toolkit to surround the

Linux kernel he had invented and the GPL's infectious properties to protect it, but rejecting the
ideological program that went with RMS'’s license. Torvalds affirmed that he thought free software
better in general but occasionally used proprietary programs. His refusal to be a zealot even in his own
cause made him tremendously attractive to the majority of hackers who had been silently
uncomfortable with RMS’s rhetoric, but had lacked any focus or convincing spokesperson for their
skepticism.

Torvalds’s cheerful pragmatism and adept but low-key style catalyzed an astonishing string of
victories for the hacker culture in the years 1993-1997, including not merely technical successes but
the solid beginnings of a distribution, service and support industry around the Linux operating system.
As a result his prestige and influence skyrocketed. Torvalds became a hero on Internet time; by 1995,
he had achieved in just four years the kind of culture-wide eminence that RMS had required fifteen
years to earn — and far exceeddllman’srecord at selling “free software” to the outside world. By
contrast with Torvalds, RMS'’s rhetoric began to seem both stridentresugdcessful.

Between 1991 and 1995nux went from a proof-of-concept surrounding an 0.1 prototype kernel to an
operating system that could compete on features and performance with proprietary Unixes, and beat
most of them on important statistics like continuous uptime. In 1995, Linux found its killer app;
Apachethe open-source webserver. Like Linux, Apache proved remarkably stable and efficient.
Linux boxes running Apache quickly became the platform of choice for ISPs worldwide, capturing
about 60% ofvebsite§] and handily beating both of its major proprietagynpetitors.

The one thing Torvalds did not offer was a new ideology — a new rationale or generative myth of
hacking, and a positive discourse to replace RMS’s hostility to intellectual property with a program
more attractive to people both within and outside the haukarre.

The author of this book inadvertently supplied this lack in 1997 as a result of trying to understand why
Linux’s development had not collapsed in confusion years before. The technical conclusions of the
author’s papefflRaymondOdwill be summarized in Chapt@7 (OpenSourcé) For this historical

sketch, it will be sufficient to note the impact of the paper’s central formula: “Given a sufficiently

large number of eyeballs, all bugs ahallow”.




This observation implied something nobody in the hacker culture had dared to really believe in the
preceding quarter-century: that its methods could reliably produce software that was not just more
elegant but more reliable abétterthan our proprietary competitors’ code. This consequence, quite
unexpectedly, turned out to present exactly the direct challenge to the discourse of “free software” that
Torvalds himself had never been interested in mounting. For most hackers and almost all hon-hackers,
“Free software because it works better” easily trumped “Free software because all software should be
free”.

The paper’s contrast between ‘cathedral’ (centralized, closed, controlled, secretive) and ‘bazaar’
(decentralized, open, peer-review-intensive) modes of development became a central metaphor in the
new thinking. In an important sense this was merely a return to Unix’s pre-divestiture roots — one
could view it adMcllroy’s 1991 observations about the positive effects of peer pressure on Unix
development in the early 1970s and DemRitshie’s 1979 reflections on fellowship cross-fertilizing

with the early ARPANET's academic tradition of peer review, and with its idealism about distributed
communities ofmind.

In early 1998, the new thinking helped motivate Netscape Communications to release the source code
of its Mozilla web browser. The press attention surrounding that event took Linux to Wall Street,
helped drive the technology-stock boom of 1999-2001, and proved to be a turning point in both the
history of the hacker culture and @hix.

[ Current and historical webserver share figures are available at the nfidatbiaft Web Servdr
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The open-source movement: 1998 anohward.

By the time of the Mozilla release in 1998, the hacker community could best be analyzed as a loose
collection of factions or tribes that included Rich&tdllman’sFree Software Movement, the Linux
community, thePerlcommunity, theApachecommunity, the BS@ommunity,the X developers, the
Internet Engineering Task For&TF), and at least a dozen others. These factions overlap, and an
individual developer would be quite likely to be affiliated with twormre.

A tribe might be grouped around a particular codebase that they maintain, or around one or more
charismatic influence leaders, or around a language or development tool, or around a particular
software license, or around a technical standard, or around a caretaker organization for some part of
the infrastructure. Prestige tends to correlate with longevity and historical contribution as well as more
obvious drivers like current market- and mind-share; thus, perhaps the most universally respected of
the tribes is théETF, which can claim continuity back to the beginnings of the ARPANET in 1969.
TheBSD community, with continuous traditions back to the late 1970s, commands considerable
prestige despite having a much lower installation count than L8takman’sFree Software

Movement, dating back to to the early 1980s, ranks among the senior tribes both on historical
contribution and as the maintainer of several of the software tools in heaviest dayuseday

After 1995Linux acquired a special role as both the unifying platform for most of the community’s

other software and the hackers’ most publicly recognizable brand name. The Linux community
showed a corresponding tendency to absorb other sub-tribes — and, for that matter, to co-opt and
absorb thénackerfactions associated with proprietary Unixes. The hacker culture as a whole began to
draw together around a common mission — push Linux and the bazaar development model as far as it
couldgo.

Because the post-1980 hackatturehad become so deeply rooted in Unix, the new mission was
implicitly a brief for the triumph of the Unix tradition. Many of the hacker community’s senior leaders
were also Unix old-timers, still bearing scars from the post-divestiture civil wars of the 1980s and
getting behind.inux as the last, best hope to fulfil the rebel dreams of the earlydayix

The Mozilla release helped further concentrate opinions. In March of 1998 an unprecedented summit
meeting of community influence leaders representing almost all of the major tribes convened to
consider common goals and tactics. That meeting adopted a new label for the common development
method of all the factions: opesource.

Within six months almost all the tribes in the hacker community would accept “open source” as its
new banner. Older groups IIKETF and the BSD developers would begin to apply it restrospectively

to what they had been doing all along. In fact, by 2000 the rhetoric of open source would not just unify
the hacker culture’s present practice and plans for the future, but re-color its view of gagiwn

The galvanizing effect of the Netscape announcement, and of the new prominence of Linux, reached
well beyond the Unix community and the hacker culture. Beginning in 1995, developers from various
platforms in the path of Microsoft’'s Windows juggernaut (MacOS; Amiga; OS/2; DOS; CP/M; the
weaker proprietary Unixes; various mainframe, minicomputer, and obsolete microcomputer operating
systems) had banded together around Sun Microsystdms&idMany disgruntled Windows

developers joined them in hopes of maintaining at least some nominal independence from Microsoft.
But Sun’s handling of Java was (as we discuss in CHapi@&anguageg)clumsy and alienating on

several levels. Many Java developers liked what they saw in the nascent open-source movement, and
followed Netscape’s lead into Linux and open source just as they had previously followed Netscape
into Java.



Open-source activists welcomed the surge of immigrants from everywhere. The old Unix hands began
to share the new immigrants’ dreams of not merely passively out-enduring the Microsoft monopoly,
but actually reclaiming key markets from it. The open-source community as a whole prepared a major
push for mainstream respectability, and began to welcome alliances with major corporations that
increasingly feared losing control of their own businesses as Microsoft’s lock-in tactics grew ever
bolder.

There was one exception: Rich&thllmanandhe Free Software Movement. “Open source” was
explicitly intended to replace Stallman’s preferred “free software” with a public label that was
ideologically neutral, acceptable both to historically opposed groups lil&SBdackers and those
who did not wish to take a position in the GPL/anti-Giebate.

Stallman flirted with adopting the term, then rejected it on the grounds that it failed to represent the
moral position that was central to his thinking. The Free Software Movement has since insisted on its
separateness from “open source”. Most hackers outside the Free Software Movement view this
position as a divisive quibble, creating perhaps the most significant political fissure in the hacker
culture.

The other (and more important) intention behind “open source” was to present the hacker community’s
methods in a more market-friendly, less confrontational way. In this role, fortunately, it proved an
unqualifiedsuccess.



The lessons of Uniistory

The largest-scale pattern in the history of Unix is this: when and where Unix has adhered most closely
to open-sourcepracticeis has prospered. Attempts to proprietarize it have invariably resulted in
stagnation andecline.

In retrospect, this should probably have become obvious much sooner than it did. We lost ten years
after 1984 learning our lesson, and it would probably serve us very ill to ever againtforget

Being smarter than anyone else about important but narrow issues of software design didn’t prevent us
from being almost completely blind about the consequences of interactions between technology and
economics that were happening right under our noses. Even the most perceptive and forward-looking
thinkers in the Unix community were at best half-sighted. The lesson for the future is that
over-committing to any one technology or business model would be a mistake — and maintaining the
adaptive flexibility of our software and the design tradition that goes with it is correspondingly
imperative.

Never bet against the cheap plastic solution. Or, equivalently, the low-end/high-volume hardware
technology almost always ends up climbing the power curve and winning. The economist Clayton
Christensen calls thidisruptivetechnologyand showed how this happened with disk drives, steam
shovels, and motorcycles Tihe InnovatorDilemmg[Christensen]We saw it happen as

minicomputers displaced mainframes, workstations and servers replaced minis, and commaodity Intel
boxes replaced workstations and servers. The open-source movement is winning by commaoditizing
software. To prosper, Unix needs to maintain the habit of co-opting the cheap plastic solution rather
than trying to fighit.

Finally, the old-school Unix community’s efforts to be “professional” by welcoming in all the

command machinery of conventional corporate organization, finance, and marketing failed. We had to
be rescued from our folly by a rebel alliance of obsessive geeks and creative-misfits then

proceeded to show us that professionalism and dedication really meant what we had bdsfateing

we succumbed to the mundane persuasions of “sound bugiaetses”.

The application of these lessons with respect to software technologies other than Unix is left as an easy
exercise for theeader.



Chapter 3. Contrasts
Comparing the Unix Philosophy With Others
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If you have any trouble sounding condescending, find a Unix user to show you ltmmet's

--ScottAdams

Much of this book develops the claim that the design of the Unix operating system entails a
philosophy that profoundly affects the way development all the way up the application stack is done. It
is therefore instructive to contrast the classic Unix way with the styles of design and programming
native to other major operatisystems.



The elements of operating-systemtyle

Before we can start discussing specific operating systems, we’ll need need an organizing framework
for the ways that operating-system design can affect programming style. These are patterns that will
recur repeatedly in our speciixamples.

Overall, the design and programming styles associated with different operating system seem to derive
from two different sources — (a) what the operating-system designers intended, and (b) uniformities
forced on designs by costs and limitations in the programemmgonment.

What is the unifyingidea?

Unix has a couple of unifying ideas or metaphors that shape its APIs and the development style that
proceeds from them — the most important of these are probably the “everything is a file” model and
the pipemetaphorln general, development style under any given operating system is strongly
conditioned by the unifying ideas baked into the system by its designers — they percolate upwards
into applications programming from the models provided by system tookRisd

Accordingly, the most basic question to ask in contrasting Unix with another operating system is: does
it have unifying ideas that shape its development, and how do they diffeUfiors?

To design the perfect anti-Unix: have no unifying idea at all, just an incoherent pile of tehtuves.

Cooperating processes

In the Unix experience, inexpensive process-spawning and easy inter-process communication (IPC)
makes a whole ecology of small toghipes,and filters possible. We’'ll explore this ecology in

Chapte[6 (Multiprogramming) here, we need to point out some consequences of expensive
process-spawning angcC.

If an operating system makes spawning new processes expensive, you'll usually see all of the
following consequences:

e Multithreading is extensively used for tasks that Unix would handle with multiple communicating
lightweightprocesses.

® |earning and using asynchronous I/O isuast.
e Monster monoliths become a more natural wagrofjramming.

® |Lots of policy has to be expressed within those monoliths. This enco@agemd elaborately
layered internal code organization, rather than C and relatively flat inteematchies.

® \When processes can’t avoid a need to communicate, they do so through mechanisms that are
clumsy, inefficient, and insecure, such as tempdikay.

This is an example of common stylistic traits (even in applications programming) being driven by a
limitation in the OSenvironment.



To design the perfect anti-Unix, make process-spawning very expensive and leave IPC as an
unsupported or half-supportafterthought.

Internal boundaries

Unix has wired into it an assumption that the programmer knows best. It doesn’t stop you or request
confirmation when you do dangerous things with your own datagrtikér *. On the other hand,
Unix is rather careful about not letting you step on other peogéess

Unix has at least three levels of internal boundaries that guard against malicious users or buggy
programs. One is memory management; Unix uses its hardware’s memory management unit (MMU)

to ensure that separate processes are prevented from intruding on the others’ memory-address spaces.
A second is the presence of true privilege groups for multiple users — an ordinary (non-root) user
cannot alter or read another user’s files without permission. A third is the confinement of
security-critical functions to the smallest possible pieces of trusted code. Under Unix, even the shell
(the system command interpreter) is not a privileged program.

The strength of an operating system'’s internal boundaries is not merely an abstract issue of design —
it has important practical consequences for the security of the system.

To design the perfect anti-Unix, discard or bypass memory management so that a runaway process can
crash, subvert, or corrupt any running program. Have weak or nonexistent privilege groups, so users
can readily alter each others’ files and the system’s critical data. And trust large volumes of code, like
the entire shell and GUI, so that any bug or successful attack on that code becomes a threat to the
entiresystem.

File attributes and record structures

Unix files have neither record structure nor attributes. In some operating systems, files have an
associated record structure; the operating system (or its service libraries) knows about files with a
fixed record length, or about text line termination and whether CR/LF is to be read as a single logical
character.

In other operating systems, files and directories can have name/attribute pairs associated with them —
out-of band data used (for example) to associate a document file with an application that understands
it. (The classic Unix way to handle these associations is to have applications recognize ‘magic
numbers’, or other type data in-band of fifez)

OS-level record structures are generally an optimizétamk,and do little more than complicate APls
and programmers’ lives. They encourage the use of opaque record-oriented file formats that generic
tools like text editors cannot repdoperly.

File attributes can be useful, but (as we will see in ChA@ g) can raise some awkward

semantic issues in a world of byte-stream-oriented toolpiged.When file attributes are supported

at the operating-system level, they predispose programmers to use opaque formats and lean on the file
attributes to tie them to the specific applications that intetpegh.

To design the perfect anti-Unix, have a cumbersome set of record structures that make it a hit-or-miss
proposition whether any given tool will be able to even read a file as the writer intended it. Add file
attributes and have the system depend on them heavily, so that the semantics of a file will not be
determinable by looking at its in-baddta.



Binary file formats

If your operating system uses binary formats for critical data (such as user-account records) it is likely
that no tradition of readable textual formats for applications will develop. We explain in more detalil
why this is a problem in Chap{er(Textuality} For now it’s sufficient to note thellowing:

e Even if CLI, scripting anghipesare supported, very few filters wélolve.

e Data files will be accessible only through dedicated tools. Developers will think of the tools
rather than the data files as central. Thus, different versions of file formats will tend to be
incompatible.

To design the perfect anti-Unix, make all file formats binary and opaque, and require heavyweight
tools to read and editem.

Preferred Ul style

In Chaptefll (Usernterfacegwe will develop in some detail the consequences of the differences
betweercommand-lineénterfaces(CLIs) andgraphical useiinterfaces(GUIs). Which kind an

operating system’s designers choose as its normal mode of presentation will affect many aspects of the
design, from process scheduling and memory management on u@fiplication programming
interfaces(APIs) presented for applicationsuse.

It has been enough years since the Macintosh that very few people need to be convinced that weak
GUI facilities in an operating system are a problem. The Unix lesson is the opposite; that weak CLI
facilities are a less obvious but equally sedeficit.

If the CLI facilities of an operating system are weak or nonexistent, you'll also see the following
consequences:

e Programs will not be designed to cooperate with each other — becausarhdye. Outputs
aren’t conformable toputs.

® Remote system administration will be sparsely supported, more difficult to use, and more
network-intensive.

® Even simple non-interactive programs will incur the overhead of a GUI or elaborate scripting
interface.

® Servers, daemons, and background processes will probably be impossible or at least rather
difficult to program.

To design the perfect anti-Unix, have no CLI interface and no capability to pogams.

Who is the intendedaudience?

The design of operating systems varies in response to the expected audience for the system. Some
operating systems are intended for back rooms, some for desktops. Some are designed for technical
users, others for end users. Some are intended to work standalone in real-time control applications,
others for an environment of timesharing and pervasgeorking.



One important distinction is client vs. server. ‘Client’ translates as: lightweight, able to run on PCs,
designed to be switched on when needed and off when the user is done, putting a lot of its resources
into fancy user interfaces. ‘Server’ translates as: heavyweight, capable of running continuously, fully
multitasking to handle multiple sessions. In origin all operating systems were server operating

systems; the concept of a client operating systems only emerged in the late 1970s with inexpensive but
underpowered PC hardware. Client operating systems are more focused on a smooth user experience
than on 24/ptime.

All these variables have an effect on development style. One of the most obvious is the level of
interface complexity the target audience will tolerate, and how it tends to weight perceived complexity
against other variables like cost azapability.

Unix is often said to have been written by programmers for programmers — an audience that is
notoriously tolerant of interface complexity. To design the perfect anti-Unix, ensure that no operation
(even if it has serious negative consequences) ever requires thethsst. to

What are the entry barriers to development?

Another important dimension along which operating systems differ is the height of the barrier that
separates mere users from becoming developers. There are two important cost drivers here. One is the
monetary cost of development tools, the other is is the time cost of gaining proficiency as a developer.
Some development cultures evolve social barriers to entry, but these are usually an effect of the
underlying technology costs, not a primaause.

Expensive development tools and complex, opaque APIls produce small and elitist programming
cultures. In those cultures, programming projects are large, serious endeavors — they have to be in
order to offer a payoff that properly amortizes the cost of both hard and soft (human) capital invested.
Large, serious projects tend to produce large, sepmgams.

Inexpensive tools and simple interfaces support casual programming, hobbyist cultures, and
exploration. Programming projects can be small (often, formal project structure is plain unnecessary),
and failure is not a catastrophe. This changes the style in which people develop code; among other
things, they show less tendency to over-commit to faifgatoaches.

Casual programming tends to produce lots of small programs and a self-reinforcing, expanding
community of knowledge. In a world of cheap hardware, the presence or absence of such a community
is an increasingly important factor in whether an operating system is long-term vialble at

Unix pioneered casual programming. One of the things Unix was first at doing was shipping with a
compiler and scripting tools as part of the default installation available to all users, supporting a
hobbyist software-development culture that spanned multiple installations. Many people who write
code under Unix do not think of it as writing code — they think of it as writing scripts to automate
common tasks, or as customizing thexivironment.

To design the perfect anti-Unix, make casual programimipgssible.



Operating-systemcomparisons

For detailed discussion of the technical features of different operating systems

VMS

VMS is the proprietary operating system originally developed for the VAX minicomputer from Digital
Equipment Corporation. It was first released in 1978, was an important production operating system in
the 1980s and early 1990s, and continued to be maintained when DEC was acquired by Compaq and
Compaq was acquired by Hewlett-Packard. It is still sold and supported in early 2003, though little
new development goes on irtadayld . VMS is surveyed here to show the contrast between Unix and
other CLI-oriented operating systems from the minicompertr

VMS makes process-spawning very expensive. The VMS file system has an elaborate notion of record
types (though not attributes). These traits have all the consequences we outlined earlier on, especially
(in VMS'’s case) the tendency for programs to be huge, clomdgoliths.

VMS features long, readable COBOL-like system commands and command options and excellent
on-line help (not for APls, but for the executable programs and command-line syntax). In fact, the
VMS CLI and its help system are the organizing metaphor of VMS. Thowgindowshas been

retrofitted onto the system, the CLI remains the most important stylistic influence on program design.
This has major implicatiorfer:

® The frequency with which people use command line functions — the more voluminously you
have to type, the less you want toitlo

® The size of programs — people want to type less, so they want to use fewer programs, and write
larger ones with more bundléanctions.

® The number and types of options your program accepts — they must conform to the syntactic
constraints imposed by the helgstem.

VMS has a respectable system of internal boundaries, It was designed for true multi-user operation and
fully employs the hardware MMU to firewall processes from each other. The system command
interpreter is privileged, but the encapsulation of critical functions is otherwise pretty good. Security
cracks against VMS have begre.

VMS tools were initially expensive, and its interfaces are complex. There are enormous volumes of
VMS programmer documentation that are available only in paper form, so looking up anything is a
high-overhead operation. This tended to discourage exploratory programming and learning a large
toolkit. VMS has only developed casual programming and a hobbyist culture since being nearly
abandoned by its vendor, and that culture is not particigrdng.

Like Unix, VMS predated the client/server distinction. It was successful in its day as a general-purpose
timesharing operating system. The intended audience was primarily technical users and
software-intensive businesses, implying a moderate tolerancerfariexity.
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Mac OS

The Macintosh operating system was designed at Apple in the early 1980s, inspired by pioneering
work on GUIs done earlier at XEROX’s Palo Alto Research Center. It debuted with the Macintosh in
1984. MacOS has gone through two significant design transitions since. The first was the shift from
supporting only a single application at a time to being able to cooperatively multitask multiple
applications (MultiFinder); the second was the shift from 68000 to PowerPC processors, which both
preserved backwards binary compatibility with 68K applications and brought in an advanced shared
library management system for PowerPC applications, replacing the original 68K trap
instruction-based code-sharing system. A third (proceeding in early 2003) is the effort to merge its
design ideas with a Unix-derived infrastructure in Mac OS X. Except where specifically noted, the
discussion here applies to pre-OS#{sions.

MacOS has a very strong unifying idea that is very different from Unix’s — the Mac Interface
Guidelines. These specify in great detail what an application GUI should look like and how it should
behave. A related and important idea is that things stay where you put them — documents, directories,
and other objects have persistent locations on the desktop that the system doesn’t mess with, and the
desktop context persists througgiboots.

The Macintosh’s unifying idea is so strong that most of the other design choices we discussed above
are either forced by it or invisible. All programs have GUIs. There is no CLI at all. Scripting facilities

are present but much less commonly used than under Unix; many Mac programmers never learn them.
MacOS's captive-interface GUI metaphor (organized around a single main event loop) leads to a weak
scheduler without pre-emption. This, and the fact that all MultiFinder applications run in a single large
address space, therefore it is not practical to use separated processes or even threads rather than
polling.

This doesn’t mean that MacOS applications are invariably monster monoliths, however. The system’s
GUI support code, which is partly implemented in a ROM shipped with the hardware and partly
implemented in shared libraries, communicates with MacOS programs via an event interface that has
been quite stable since its beginnings. Thus, the design of the OS encourages a relatively clean
separation between application engine and tGtérface.

MacOS also has strong support for isolating application metadata like menu structures from the engine
code. MacOS files have both a ‘data fork’ — a Unix-style bag of bytes that contains a document or
program code — and a ‘resource fork’ — a set of user-definable file attributes. Mac applications tend

to be designed so that (for example) the images and sound used in them are stored in the resource fork
and can be modified separately from the applicatmite.

The MacOS system of internal boundaries is very weak. There is a wired-in assumption that it's
single-user, so there are no per-user privilege groups. All MultiFinder applications run in the same
address space, so bad code in any application can corrupt anything outside the operating system’s
low-level kernel. Security cracks against MacOS machines are very easy to write; the OS has been
spared an epidemic mainly because very few people are motivated td.crack

Mac programmers tend to design in the opposite direction from Unix programmers — they work from
the interface inwards, rather than from the engine outwards. We'll discuss some of the implications of
this choice in Chapt§8 (Futures) Everything in the design of the MacOS conspires to encourage

this.



The intended role for the Macintosh was as a client operating system for nontechnical end users,
implying a very low tolerance for interface complexity. The Macintosh culture became very, very
good at designing simplaterfaces.

The incremental cost of becoming a developer, assuming you have a Macintosh already, has never
been high. Thus, despite rather complex interfaces, the Mac developed a strong hobbyist culture early
on. There is a vigorous tradition of small tools, shareware, and user-sugudtiedate.

Classic MacOS has been end-of-lifed. Most of its facilities have been imported into Mac OS X, which
mates them to a Unix infrastructure derived fromBleekeleytradition. At the same time,

leading-edge Unixes such aisiuxarebeginning to borrow ideas like file attributes (a generalization

of the resource fork) frorivlacOS.

0S/2

0S/2 began life as dBM development project called ADOS (‘Advanced DOS’) project, one of three
competitors to become DOS 4. At that time, IBM afidrosoft were formally collaborating to

develop a next-generation operating system for the PC. OS/2 1.0 was first released in 1987 for the 286,
but was unsuccessful. The 2.0 version for the 386 came out in 1992, but by that time the

IBM/Microsoft alliance had already fractured Microsoft went in a different (and more lucrative)

direction with Windows 3.0. OS/2 attracted a loyal minority following, but never attracted a critical

mass of developers and users. It remained third in the desktop market, behind the Macintosh, until
being subsumed into IBM'3avainitiativeafter 1996. The last released version was 4.0 in 1997. Early
versions found their way into embedded systems and still, as of early 2003, run many of the world’s
ATMs.

Like Unix, OS/2 was built to be multitasking and would not run on a machine without an MMU (early
versions simulated an MMU using the 286’s memory segmentation). Unlike Unix, OS/2 was never
built to be multi-user. Process-spawning was relatively cheap, but IPC was difficult and brittle. Thus
there were no programs analogous to Unix service daemons, and OS/2 never did multi-function
networking verywell.

0S/2 had both a CLI and GUI. Most of the positive legendry around OS/2 was about the Workplace
Shell (WPS), the OS/2 desktop. Some of this technology was licensed from the developers of the
AmigaOS Workbench, a pioneering GUI desktop that still as of 2003 has a loyal fan base in Europe.
This is the one area of the design where OS/2 achieved a level of capability which Unix arguably has
not yet matched. The WPS was a clean, powerful object-oriented design with understandable behavior
and good extensibility. Years later it would become a model for Linux’s GNOidEct.

The class-hierarchy design of WPS was one of OS/2’s unifying ideas. The other was multithreading.
0S/2 programmers used threading heavily as a partial substitute for IPC between peer processes. No
tradition of cooperating program toolkidieveloped.

0OS/2 actually had a windowing layer beneath the Workplace Shell called the Presentation Manager;
these layers separated policy from mechanism in a way analogous to X server vs. X toolkit layering.
The separation was never as clean, and became less so with time; in 3.0 thegngece

0S/2 had the internal boundaries one would expect in a single-user OS. Running processes were
protected from each other, and kernel space was protected from user space, but there were no per-user
privilege groups, This meant the filesystem had no protection against malicious code. Another
consequence was that there was no analog of a home directory; application data tended to be scattered



all over thesystem.

A further consequence of the lack of multi-user capability was that there could be no privilege
distinction in userspace. Thus, developers tended to only trust kernel code. Many system tasks which
in Unix would be handled by user-space daemons were jammed into the kernel or the WPS. Both
bloated as aesult.

0S/2 had a text vs. binary mode, but no other file record structure. It supported file attributes, which
were used for desktop persistence after the manner of the Macintosh. System databases were mostly in
binaryformats.

The preferred Ul style was through the WPS. User interfaces tended to be ergonomically better than
Windows, though not up to Macintosh standards (OS/2’s most active period was relatively early in
MacOSClassic’shistory). Like Unix and Windows, OS/2’s user interface was themed around
multiple, independent per-task groups of windows, rather than capturing the desktop for the running
application.

The intended audience for OS/2 was business and non-technical end users, implying a low tolerance
for interface complexity. It was used both as a client operating system and as a file asehpgimt

In the early 1990s, developers in the OS/2 community began to migrate to a Unix-inspired
environment called EMX that was designed to em&@&IXinterfacesPorts of Unix software
started routinely showing up under OS/2 in the latter half of the 1990s.

Anyone could download EMX, which included the GNU Compiler Collection and other open-source
development tooldBM intermittently gave away copies of the system documentation in the OS/2
developer’s toolkit, which was posted on many BBSs and FTP sites. Because of this, the “Hobbes”
FTP archive of user-developed OS/2 software had already grown to over a gigabyte in size by 1995. A
very vigorous tradition of small tools, exploratory programming, and shareware developed and
retained a loyal following for some years after OS/2 itself was clearly headed for the dustbin of

history.

After the release of Windows 1995 the OS/2 community, feeling beleaguered by Microsoft and
encouraged biBM, became increasingly interested in Java. After the Netscape source code release in
early 1998 the direction of migration changed (rather suddenly), towiras

0OS/2 is interesting as a case study in how far a multi-tasking but single-user operating-system design
can be pushed. Most of the observations in this case study would apply well to other operating systems
of the same general type — notabBiyigaOSH andGEMEY . A wealth of OS/2 material is still

available on the Web in 2003, including some good histdftes

Windows NT

Windows NT (New Technology) is Microsoft’'s operating system for high-end personal and server use;
it is shipped in several variants which can all be considered the same for our purposes. All of
Microsoft's consumer operating systems since the demise of Windows ME in 2000 have been
NT-based. It is genetically descended from VMS, with which it shares some impmpbraaatteristics.

NT has grown by accretion, and lacks a unifying metaphor corresponding to Unix’s “everything is a
file” or the MacOSdesktoftd . Because core technologies are not anchored in a small set of persistent
central metaphors, they get obsoleted every few years. Each of the technology generations — DOS
(1981), Windows 3.1 (1990), Windows 95 (1995) Windows NT 4 (1996), Windows 2000 (2000),



Windows XP (2002) and .NET (in progress as of 2003) — has required that developers relearn
fundamental things in a different way, with the old way declared obsolete and no longer well
supported.

There are other consequencesvel:

® The GUI facilities coexist uneasily with the weak, remnant command-line interface inherited
from DOS and/MS.

® Socket programming has no unifying data object analogous to the Unix
everything-is-a-file-handle, so multiprogramming and network applications that are simple in
Unix require several more fundamental concepts in NT.

NT has file attributes in some of its file system types. They are used in a restricted way, to implement
access-control lists on some filesystems, and don't affect development style very much. It also has a
record-type distinction, between text and binary files, that produces occasiooghnces.

Process-spawning is expensive, scripting facilities are weak, and the OS makes extensive use of binary
file formats. In addition to the expected consequences we outlined earlier:

® Most programs cannot be scripted at all. Programs rely on complex, fixgitée procedureall
RPC methods to communicate with each other, a rich soubnggef

® There are no generic tools at all. Documents and databases can't be read or edited without
special-purposprograms.

e Over time, the CLI is more and more neglected because the environment there is so sparse, so the
problems associated with a weak CLI getrse.

System and user configuration data are centralized in a small set of registries rather than being
scattered through numerous dotfiles and system data filedJaixin

® This has one advantage — most configuration data is in a common, simple format (one
sufficiently general that some Unix programs have addpted

® On the other hand, the registry implementation lacks event listeners, so system programs can't
know when the registry has been modified. This is the major reason that Windows
reconfiguration so frequently requiresedoot.

® The registry makes the system completely non-orthogonal. Single-point failures in applications
can corrupt the registry, frequently making the entire operating system unusable and requiring a
reinstall.

® Theregistrycreepphenomenon: as the registry grows, rising access costs slow down all
programs.

NT systems are notoriously vulnerable to worms, viruses, defacements, and cracks of all kinds. There
are many reasons for this; some reasons are more fundamental than others, and the most fundamental
is that NT’s internal boundaries are extremayous.

Recent versions have retrofitted in access control lists that can be used to implement per-user privilege
groups — but a great deal of legacy code ignores them, and the operating system permits this in order
not to break backward compatibility. Furthermore, the registry is not split up by privilege group, so



users can read or modify each others’ configuration information (possibly including passwords and
credentials for other systems) at will. There are no security controls on message traffic between GUI
clients,either.

While NT will use an MMU, NT versions after 3.5 have the system GUI wired into the same address
space as the privileged kernel for performance reasons. Recent versions even wire the web server into
kernel space in an unsuccessful attempt to match the speed of Unixsledsservers.

These holes in the boundaries have the synergistic effect of making actual security on NT systems
effectively impossible. If an intruder can get code run as any user at all (e.g., through the Outlook
email-macro feature), that code can forge messages through the window system to any other running
application. And any buffer overrun or crack in the GUI or web-server can be exploited to take control
of the entiresystem.

The intended audience for the NT operating systems is premarily nontechnical end-users, implying a
very low tolerance for interface complexity. It is used in both client and sertest

Early in its history Microsoft relied on third-party development to supply applications. They originally
published full documentation for the Windows APIs, and kept the price of development tools low. But
over time, and as competitors collapsed, Microsoft's strategy shifted to favor in-house development,
they began hiding APIs from the outside world, and development tools grew more expensive. As early
as Windows 95, Microsoft was requiring non-disclosure agreements as a condition for purchasing
professional-quality developmetatols.

The hobbyist and casual-developer culture that had grown up around DOS and earlier Windows
versions was large enough to be self-sustaining even in the face of increasing efforts by Microsoft to
lock them out (including such measures as certification programs designed to de-legitimatize
amateurs). Shareware never went away, and Microsoft’s policy began to reverse somewhat after 2000
under market pressure from open-source operating systems and Java. However, Windows interfaces
for professional programming continued to grow more complex over time, presenting an increasing
barrier to seriousoding.

The result of this history is a sharp dichotomy between the design styles practiced by amateur and
professional NT developers — the two groups barely communicate. While the hobbyist culture of
small tools and shareware is very much alive, professional NT projects tend to produce monster
monoliths even bulkier than those characteristic of ‘elitist’ operating systeméNiise

BeOS

Be, Inc. was founded in 1989 as a hardware vendor, building pioneering multiprocessing machines
around the PowerPC chip. BeOS was its attempt to add value to the hardware by inventing a new,
network-ready operating system model incorporating the lessons of both Unix and the MacOS family,
without being either. The result was a tasteful, clean, and exciting design with excellent performance
in its chosen role as a multimegtikatform.

BeOS'’s unifying ideas were ‘pervasive threading’, multimedia flows, and the file system as database.
BeOS was designed to minimize latency in the kernel, making it well-suited for processing large
volumes of data such as audio and video streams in real time. BeOS ‘threads’ were actually
lightweight processes in Unix terminology, since they supported thread-local storage and therefore did
not necessarily share all address spaces. IPC via shared memory wasdégtiand



BeOS followed the Unix model in having no file structure above the byte level. Like the MacOS, it
supported and used file attributes. In fact, the BeOS filesystem was actually a database that could be
indexed by anwttribute.

One of the things BeOS took from Unix was intelligent design of internal boundaries. It made full use
of an MMU, and sealed running processes off from each other effectively. While it presented as a
single-user operating system (no login), it supported Unix-like privilege groups in the filesystem and
elsewhere in the OS internals. These were used to protect system-critical files from being touched by
untrusted code; in Unix terms, the user was logged in as an anonymous guest at boot time, with the
only other ‘user’ being root. Full multi-user operation would have been a small change to the upper
levels of the sytem; there was in fact a BeLagitity.

BeOS tended to use binary file formats and the native database built into the filesystem, rather than
Unix-like textualformats.

The preferred Ul style of BeOS was GUI, and it leaned heavily on MacOS experience in interface
design. CLI and scripting were, however, also fully supported. The command-line shell of BeOS was a
port of bash(1), the dominant open-source Unix shell, running throB@r&&X compatibility library.

Porting of Unix CLI software was, by design, trivially easy. Infrastructure to support the full panoply

of scripting, filters and service daemons that goes with the Unix model whxa

Beos'’s intended role was as a client operating system specialized for quasi-real-time multimedia
processing. Its intended audience included technical and business end-users, implying a moderate
tolerance for interfaceomplexity.

Entry barriers to BeOS development were low; though the operating system was proprietary,
development tools were inexpensive and full documentation was readily available. The BeOS effort
began as part of one of the efforts to unseat Intel’s hardware with RISC technology, and was continued
as a software-only effort after the Internet explosion. Its strategists were paying attention during

Linux’s formative period in the early 1990s, and were fully aware of the value of a large
casual-developer base. In fact they succeeded in attracting an intensely loyal following; as of 2003
there are no fewer than five separate projects attempting to resurrect BeOSsnwpen

Unfortunately, the business strategy surrounding BeOS was not as astute as the technical design. The
BeOS software was originally bundled with dedicated hardware, and marketed with only vague hints
about intended applications. Later (1998) it was ported to generic PCs and more closely focused on
multimedia applications, but never attracted a critical mass of applications or users. BeOS finally
succumbed in 2001 to a combination of anti-competitive maneuvering by Microsoft (lawsuit in
progress as of 2003) and cost pressure from variahiswt that had been adapted for multimedia
handling.

Linux

Linux is the leader of the pack of new-school open-source Unixes that have emerged since 1990 (also
including FreeBSD, NetBSD, OpenBSDarwin, and Cygwin), and is representative of the design
direction being taken by the group as a whole. The trends in it can be taken as representative for this
entiregroup.

Linux does not include any code from the original Unix source tree, but it was designed from Unix
standards to behave like a Unix. In the rest of this book, we emphasize the continuity between Unix
and Linux. That continuity is extremely strong, both in terms of technology and key developers — but



here we emphasize some directions Linux is taking that mark a departure from ‘classical’ Unix
tradition.

Many developers and activists in the Linux community have ambitions to win a substantial share of
end-user desktops. This makes Linux’s intended audience quite a bit broader than was ever the case
for the old-school Unixes, which have primarily aimed at the server and technical-workstation
markets. This has implications for the way Linux hackers desifjware.

The most obvious change is a shift in preferred interface styles. Unix was originally designed for use
on teletypes and slow printing terminals. Through much of its lifetime it was strongly associated with
character-cell video-display terminals lacking either graphics or color capabilities. Most Unix
programmers stayed firmly wedded to the command line long after large end-user applications had
migrated to X windows-based GUIs, and the design of both Unix operating systems and their
applications have continued to reflect tfast.

Linux users and developers, on the other hand, have been adapting themselves to address the
nontechnical user’s fear of CLIs. They have moved to building GUIs and GUI tools much more
intensively than was the case in old-school Unix, or even in contemporary proprietary Unixes. To a
lesser but significant extent, this is true of the other open-source Uniwed.as

The desire to reach end-users has also made Linux developers much more concerned with smoothness
of installation and software distribution issues than is typically the case under proprietary Unix

systems. One consequence is that Linux features binary-package systems far more sophisticated than
any analogues in proprietary Unixes, with interfaces designed (as of 2003, with only mixed success) to
be palatable to nontechnical emskrs.

The Linux community wants, more than the old-school Unixes ever did, to turn their software into a
sort of universal pipefitting for connecting together other environments. Thus, Linux features support
for reading and (often) writing the filesystem formats and networking methods native to other
operating systems. It also supports multiple-booting with them on the same hardware, and simulating
them in[éoftware inside Linux itself. The long-term goal is subsumption; Linux emulates so it can
absorb

The goal of subsuming the competition, combined with the drive to reach the end-user, has motivated
Linux developers to adopt design ideas from non-Unix operating systems to a degree that makes
traditional Unixes look rather insular. Linux applications using Windows .INI format files for
configuration is a minor example we’ll cover in Chait@(Configuration) various attempts to adapt
CORBA for Linux desktop projects are another. Linux 2.5’s incorporation of extended file attributes,
which among other things can be used to emulate the semantics of the Macintosh resource fork, is a
recent major example at time of writing.

The remaining proprietary Unixes are designed to be big products for big IT budgets. Their economic
niche encourages designs optimized for maximum power on high-end, leading-edge hardware.
Because Linux has part of its roots among PC hobbyists, it emphasizes doing more with less. Where
proprietary Unixes are tuned for multiprocessor and server-cluster operation at the expense of
performance on low-end hardware, core Linux developers have explicitly chosen not to accept more
complexity and overhead on low-end machines for marginal performance gains on higtrebnake.

Indeed, a substantial fraction of the Linux user community is understood to be wringing usefulness out
of hardware as technically obsolete today as Ken Thompson’'s PDP-7 was in 1969. As a consequence,
Linux applications are under pressure to stay lean and mean that their counterparts under proprietary
Unix do notexperience.



These trends have implications for the future of Unix as a whole, a topic we’'ll return to in @&pter

(Futures)

[¥ More information is available at t{@penVMS.orgsitd

¥ [AmigaOSPorta)

9 [The GEM Operatingysterh
Y See, for example, tf@SVoicd andOS/2ZBBS.COMsites.

B4 Perhaps. It has been argued that the unifying metaphor of all Microsoft operating systems is “the
customer must be lockeq.

B9 The results of Linux’s emulate-and-subsume strategy differ noticeably from the
embrace-and-extend practiced by some of its competitors — for starters, Linux does not break
compatibility with what it is emulating in order to lock customers into the “extenckrdion.


http://www.openvms.org/
http://os.amiga.com/
http://www.geocities.com/SiliconValley/Vista/6148/gem.html
http://www.os2voice.org/
http://www.os2bbs.com/

What goes around, comearound

We attempted to select for comparison time-sharing systems that either are now or have been in the
past competitive with Unix. The field of plausible candidates is not wide. Most (Multics, TOPS-10,
TOPS-20Aegis, GECOS, RDOS, MPE and perhaps a dozen others) are so long dead that they are
fading from the collective memory of the computing field. Of those we surveyed, VMS and OS/2 are
moribund, and MacOS has been subsumed by a Unix derivative. Only Microsoft Windows remains as
a viable competitor independent of the Utredition.

We pointed out Unix’s strengths in ChagtgiPhilosophy) and they are certainly part of the
explanation. But it's actually more instructive to look at the obverse of that answer and ask which
weaknesses in Unix’'s competitors did thiem

The most obvious shared problem is non-portability. Most of Unix’s pre-1980 competitors were tied to
a single hardware platform, and died with that platform. One reason VMS survived long enough to
merit inclusion here as a case study is that it was successfully ported off its original VAX hardware to
the Alpha processor. MacOS successfully made the jump from the Motorola 68000 to PowerPC chips
in the late 1980s. Microsofindowsescaped this problem by being in the right place when
commoditization flattened the market for general-purpose computers inton@iRiculture.

From 1980 on, another particular weakness continually re-emerges as a theme in different systems that
Unix either steamrollered or outlasted: an inability to support netwogkacefully.

In a world of pervasive networking, even an operating system designed for single-user use needs
multi-user capability (multiple privilege groups) — because without that, any network transaction that
can trick a user into running malicious code will subvert the entire system (Windows macro viruses are
only the tip of this iceberg). Without strong multitasking, its ability to handle network traffic and run

user programs at the same time will be impaired. The operating system also needs efficient IPC so that
its network programs can communicate with each other and with the user’s foregpplindtions.

Around 1980, during the early heyday of personal computers, operating-system designers dismissed
Unix and traditional timesharing as heavyweight, cumbersome, and inappropriate for the brave new
world of single-user personal machines — despite the fact that GUI interfaces tended to demand the
reinvention of multitasking in order to cope with threads of execution bound to different windows and
widgets. The trend towards client operating systems was so intense that server operating systems were
at times dismissed as steam-powered relics of a byagme

But as the designers of BeOS noticed, the requirements of pervasive networking cannot be met without
implementing something very close to general-purpose timesharing. Single-user client operating
systems cannot thrive in an Interneteatid.

This problem drove the re-convergence of client and server operating systems. The first, pre-Internet
attempts at peer-to-peer networking over LANSs, in the late 1980s, began to expose the inadequacy of
the client-OS design model. Data on a network has to have rendezvous points in order to be shared;
thus, we can’t do without servers. At the same time, experience with the Macintosh and Windows
client operating systems raised the bar on the minimum quality of user experience customers would
tolerate.

With non-Unix models for timesharing effectively dead by 1990, there were not many possible
responses client operating-system designers could mount to this challenge. They could co-opt Unix (as
Mac OS X has done) re-invent roughly equivalent features a patch at a time (as Windows has done), or



attempt to reinvent the entire world (as BeOS tried and failed to do). But meanwhile, open-source
Unixes were growing client-like capabilities to use GUIs and run on inexpensive persmhéhes.

These pressures turned out, however, not to be as symmetrically balanced as the above description
might imply. Retrofitting server-operating-system features like multiple privilege classes and full
multitasking onto a client operating system is very difficult, quite likely to break compatibility with

older versions of the client, and generally produces a fragile and unsatisfactory result rife with stability
and security problems. Retrofitting a GUI onto a server operating system, on the other hand, raises
problems that can largely be finessed by a combination of cleverness and throwing
ever-more-inexpensive hardware resources at the problem. As with buildings, it's easier to repair
superstructure on top of a solid foundation that it is to replace the foundations without trashing the
superstructure.

Thus, the Unix design proved more capable of reinventing itself as a client than any of its
client-operating-system competitors were of reinventing themselves as servers. While many other
factors of technology and economics contributed to the Unix resurgence of the 1990s, this is one that
really foregrounds itself in any discussion of operating-system dstilgn
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Chapter 4. Modularity
Keeping It Clean, Keeping It Simple
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There are two ways of constructing a software design. One is to make it so simple that there are
obviously no deficiencies; the other is to make it so complicated that there are no obvious deficiencies.
The first method is far moudfficult.

--C. A. RHoare

The early developers of Unix were among the pioneers in software modularity. Before them, the Rule
of Modularity was computer-science theory but not engineering practice. It bears ampification here:
The only way to write complex software that won't fall on its face is to build it out of simple modules
connected by well-defined interfaces, so that most problems are local and you can have some hope of
fixing or optimizing a part without breaking tiahole.

The tradition of being careful about modularity and of paying close attention to issues like
orthogonalityanccompactness is still much deeper in the bone among Unix programmers than
elsewhere.

There is a natural hierarchy of code-partitioning methods that have evolved as programmers have had
to manage ever-increasing levels of complexity. In the the beginning, everything was one big lump of
machine code. The earliest procedural languages brought in the notion of partition by subroutine. Then
we invented service libraries to share common utility functions among multiple programs. Next, we
invented separated address spaces and communicating processes. Today we routinely distribute
program systems across multiple hosts separated by thousands of miles of oabiork

All programmers today, Unix natives or not, are taught to modularize at the subroutine level within
programs. Some learn the art of doing this at the module or abstract-data-type level and call that ‘good
design‘. Thedesign-patternsmovement is making a noble effort to push up a level from there and
discover successful design abstractions that can be applied to organize the large-scale structure of
programs.

Getting better at all these kinds of problem partitioning is a worthy goal, and many excellent
treatments of them are available elsewhere. We shall not attempt to cover all the issues relating to
modularity within programs in too much detail: first, because that is a subject for an entire volume (or



several volumes) in itself; and second, because this is a book about thdraxt mogramming.

What we will do here is examine more specifically what the Unix tradition teaches us about how to
follow the Rule of Modularity. In this chapter, our examples will live within process units. Later, in
Chaptel6 (Multiprogramming)) we’ll examine the circumstances under which partitioning programs
into multiple cooperating processes is a good idea, and more specific techniques for doing that
partitioning.




Encapsulationand optimal modulesize

The first and most important quality of modular coderisapsulationEncapsulated modules don’t
expose their internals to each other. They don't call into the middle of each others’ implementations,
and they don’t promiscuously share global data. They communicate using application programming
interfaces (APIs) — narrow, well-defined sets of procedure calls and data structures. This is what the
Rule of Modularity isabout.

The APIs between modules have a dual role. On the implementation level, they function as complexity
choke points between the modules, preventing the internals of each from leaking into its neighbors. On
the design level, it is the APIs (not the bits of implementation between them) that really define your
architecture.

One good test for whether an API is well designed is this one: if you try to write a description of it in
purely in a human language (with no source-code extracts allowed), does it make sense? It is a very
good idea to get into the habit of writing informal descriptions of your APIs before you code them.
These can help you organize your thoughts, they make useful module comments, and eventually you
might want to turn them into a roadmap document for future readers aidbe

As you push module decomposition harder, the pieces get smaller and the definition of the APIs gets
more important. Global complexity, and consequent vulnerability to bugs, decreases. It has been
received wisdom in computer science since the 1970s (exemplified in papers|Retmag] that

you want to design your software systems as hierarchies of nested modules, with the grain size of the
modules at each level held torénimum.

It is, however, possible to push this kind of decomposition too hard and make your modules too small.
There is evidendiHatton97]that when one plots defect density versus module size, the curve is
U-shaped and concave upwards. Very small and very large modules are associated with more bugs
than those of intermediate size. A different way of viewing the same data is to plot lines of code per
module versus total bugs. The curve looks roughly logarithmic up to a ‘sweet spot’ where it flattens
(corresponding to the minimum in the defect density curve) after which it goes up as the square of the
number of the lines of code (which is what one might intuitively expect for the whole curve, following
Brooks’sLaw).

Figure 4.1. Qualitative plot of defect count and density vs. modukize.
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This unexpectedly high incidence of bugs at small module sizes is robust across a wide variety of
systems implemented in different languages. Hatton has proposed a model relating this nonlinearity to
the chunk size of human short-term memdg§.

In non-mathematical terms, this means there appears to be a sweet spot between 200 and 400 logical
lines of code that minimizes probable defect density, all other factors (such as programmer skill) being
equal. This size is independent of the language being used — an observation which strongly reinforces
the advice given elsewhere in this book to program with the most powerful languages and tools you
can. Beware of taking these numbers too literally however, as methods for counting lines of code vary
considerably according to what the analyst considers a logical line, and other biases (such as whether
comments are stripped). Hatton himself suggests as a rule of thumb a 2x conversion between logical
and physical lines, suggesting an optimal range of 400-800 phlysasl

B4 In Hatton’s model, small differences in the maximum chunk size a programmer can hold in
short-term memory have a large multiplicative effect on the programmer’s efficiency. This might be a
major contributor to the order-of-magnitude (or larger) variations in effectiveness observed by Fred
Brooks andbthers.



Compactnessand orthogonality

Code is not the only sort of thing with an optimal chunk size. Languages and APIs (such as sets of
library or system calls) run up against the same sorts of human cognitive constraints that produce
Hatton’sU-curve.

Accordingly, there are two properties that Unix programmers have learned to think about very hard
when designing APIs, command sets, protocols, and other ways to make computers do tricks. These
arecompactnesandorthogonality

Compactness

Compactnessithe property that a design can fit inside a human being’s head. A good practical test for
compactness is this: does an experienced user normally need a manual? If not, then the design (or at
least the subset of it that covers normal usedispact.

Compact software tools have all the virtues of physical tools that fit well in the hand. They feel
pleasant to use, they don't obtrude themselves between your mind and your work, they make you more
productive — and they are much less likely than unwieldy tools to turn in your hand angdnjure

Compact is not equivalent to ‘weak’. A design can have a great deal of power and flexibility and still
be compact if it is built on abstractions that are easy to think about and fit together well. Nor is
compact equivalent to ‘easily learned’; some compact designs are quite difficult to understand until
you have mastered an underlying conceptual model that is tricky, at which point your view of the
world changes and compditcomesimple.

Very few software designs are compact in an absolute sense, but many are compact in a slightly looser
sense of the term. They have a compact working set, a subset of capabilities that suffices for 85% or
more of what expert users normally do with them. Practically speaking, such designs normally need a
reference card or cheat sheet but nozaual.

The concept is perhaps best illustrated by examples. The Unix system call APl is compact, but the
standardC library is not. While Unix programmers easily keep a subset of the system calls sufficient
for most applications programming (filesystem operations, signals, and process control) in their heads,
the C library on modern Unixes includes many hundreds of entry points for, e.g. mathematical
functions, that won't all fit inside a single programmeranium.

Among Unix tools, make(1) is compact; autoconf(1) and automake(1) are not. Among markup
languages, HTML is compact, but DocBook (a documentation markup language we shall discuss in
Chapte(l6 (Documentatior))is not. Man-page macros are compact, but troff(1) markoptis

Among general-purpose programming langua@esndPythonare compactC++, Perl,Java,Emacs
Lisp, andshellare not (especially since serious shell programming requires you to know half-a dozen
other tools like sed(1) aralvk(1)).

Some designs that are not compact have enough internal redundancy of features that individual
programmers end up carving out compact dialects sufficient for that 85% of common tasks by
choosing a working subset of the language. Perl is like this, for example. Such designs have a built-in
trap; when two programmers try to communicate about a project, they may find that find that
differences in their working subsets are a significant barrier to understanding and modifgiodethe



Non-compact designs are not automatically doomed or bad, however. Some problem domains are
simply too complex for a compact design to span them. Sometimes it's necessary to trade away
compactness for some other virtue, like raw power and range. Troff markup is a good example of this.
So is theBSD sockets API. The purpose of emphasizing compactness as a virtue is not to teach the
reader to treat compactness as an absolute requirement, but to do what Unix programmers do — value
compactness properly, design for it whenever possible, and not throw itastslly.

Orthogonality

Orthogonalityisone of the most important properties that can help make even complex designs
compactln a purely orthogonal design, operations do not have side effects; each action (whether it's
an API call, a macro invocation, or a language operation) changes just one thing without affecting
others. There is one and only one way to change each property of whatever system you are controlling.

Your radio has orthogonal controls. You can change the station it's tuned into independently of the
volume level, and (if the radio has one) the stereo balance control will be independent of both. Imagine
how much more difficult it would be to use a radio on which the volume knob affected the tuning —
you'd have to compensate by tweaking the tuning control every time after you changed the volume.
Worse, imagine if the tuning control also affected the volume; then, you'd have to adjust both knobs
simultaneously in exactly the right way to change either volume or tuning frequency alone while
holding the otheconstant.

Far too many software designs are non-orthogonal. One common class of design mistake, for example,
occurs in code that reads and parses data from one (source) format to another (target) format. A
designer who thinks of the source format as always being stoed in a disk file may write the conversion
function to open and read from a named file. Usually the input could just as well have been any file
handle. If the conversion routine were designed orthogonally, e.g. without the side-effect of opening a
file, it could save work later when the conversion has to be done on a data stream supplied from
standard input or any othsource.

DougMcllroy’s advice to “Do one thing well” is usually interpreted as being about simplicity. But it's
also, implicitly and at least as importantly, abotthogonality.

The problem with non-orthogonality is that side-effects complicate a programmer’s or user’s mental
model, and beg to be forgotten — with results ranging from inconvenient to dire. When you do not
forget them, you're often forced to do extra work to suppress them or work ahamd

There is an excellent discussion of orthogonality and how to achievEheiRragmatid®rogrammer
[Hunt&Thomas] As they point out, orthogonality reduces test and development time, because it's
easier to verify code that neither causes side-effects nor is dependent on side effects from other code
— there are fewer combinations to test. If it breaks, orthogonal code is more easily replaced without
disturbing the rest of the system. Finally, orthogonal code is easier to documesvuzied

The basic Unix APIs were designed for orthogonality with imperfect but considerable success. We
take for granted being able to open a file for write access without exclusive-locking it for write, for
example; not all operating systems are so graceful. Old-style (SiiBtesignals were non-orthogonal,
because signal receipt had the side-effect of resetting the signal handler to the default die-on-receipt.
There are large non-orthogonal patches like the B&RetsAPI andverylarge ones like the X

windows drawindibraries.



But on the whole the Unix APl is a good example — otherwise it not only would nobbigtnot be
so widely imitated byClibrarieson other operating systems. This is also a reason that the Unix API
repays study even if you are not a Unix programmer; it has lessons about orthogotediti to

The DRY rule

The Pragmatid®rogrammerarticulates a rule for one particular kind of orthogonality that is especially
important. The “DRY Rule” is: every piece of knowledge must hasiegle unambiguous,

authoritative representation within a system. The DRY in the name of the rule stands for a shorter and
pithier way of putting thisDon't Repeatyourself!

Repetition leads to inconsistency and code that is subtly broken, because you changed only some
repetitions when you needed to chaafief them. Often, it also means that you haven't properly
thought through the organization of yaunde.

Constants, tables, and metadata should be declared and inittalzzhd imported elsewhere. Any
time you see duplicate code, that's a darsigpn.

Often it's possible to remove code duplicationréfactoring— changing the organization of your
code without changing the core algorithms. Data duplication sometimes appears to be forced on you.
But Hunt & Thomas suggest some valuable questioasko

e |f you have duplicated data used in your code because it has to have two different representations
in two different places, can you write a function, tool or code generator to make one
representation from the other, or both from a comsource?

e |f your documentation duplicates knowledge in your code, is there a way you can generate parts
of the documentation from parts of the code, or vice-versa, or both from a common higher-level
representation?

e |f your header files and interface declarations duplicate knowledge in your implementation code,
is there a way you can generate the header files and interface declarations frodethe

From deeper within the Unix tradition, we can add some obaun;

® Are you duplicating data because you're caching intermediate results of some computation or
lookup? Consider carefully whether this is prematp#mization;stale caches (and the layers of
code needed to keep caches synchronized) are a fertile sobragsof

e |f you see lots of duplicative boilerplate code, is there a way to generate all of it from a single
higher-level representation, twiddling a few knobs to generate the diftereed?

The reader should begin to see a pattern emehgirey..

In the Unix world, the DRY Rule as a unifying idea has seldom been explicit — but heavy use of code
generators to implement particulkandsof DRY are very much part of the tradition. We’ll survey
these techniques in Chag&{Generatior])



The value ofdetachment

We began this book with a reference to Zen: “a special transmission, outside the scriptures”. This was
not mere exoticism for stylistic effect; the core concepts of Unix have always had a spare, Zen-like
simplicity that continues to shine through the layers of historical accidents that have accreted around
them.This quality is reflected in the cornerstone documents of UnixTlkeC Programming
LanguagK&RJ]and the 1974 CACM paper that introduced Unix to the world; one of the famous
guotes from that paper observes “...constraint has encouraged not only economy, but also a certain
elegance of design”. That simplicity came from trying to think not about how much a language or
operating system could do, but of héttle it could do — not by carrying assumptions but by starting
from zero.

To design focompactnesandorthogonalitystart from zero. Zen Buddhism teaches that attachment
leads to suffering; experience with software design teaches that attachment to unnoticed assumptions
leads to non-orthogonality, non-compact designs, and projects that fail or become maintenance
nightmares.

To achieve enlightenment and surcease from suffering, Zen teaches detachment. The Unix tradition
teaches the value of detachment from the particular, accidental conditions under which a design
problem was posed. Abstract. Simplify. Generalize. Because we write software to solve problems, we
cannot completely detach from the problems — but it is well worth the mental effort to see how many
assumptions you can throw away, and whether the design becomesomgegectand orthogonal as

you do that. Possibilities for code reuse oftesult.

Jokes about the relationship between Unix and Zen are a live part of the Unix tradition as well. This is
not anaccident.



Top-down, bottom-up, and gluelayers

Broadly speaking, there are two directions one can go in designing a hierarchy of functions or objects.
Which direction you choose, and when, has a profound effect on the layering obgeur

One direction is bottom-up from the the specific operations in the problem domain that you know you
will need to perform — from concrete to abstract. For example, if one is designing firmware for a disk
drive, some of the bottom-level primitives might be ‘seek head to physical block’, ‘read physical
block’, ‘write physical block’, ‘toggle drive LEDeétc.

The other direction is top-down, abstract to concrete, from the highest-level specification describing
the project as a whole, or the application logic, downwards to individual operations. Thus, if one is
designing software for a mass-storage controller that might drive several different sorts of media, one
might start with abstract operations like ‘seek logical block’, ‘read logical block’, ‘write logical block’,
‘toggle activity indication’. These would differ from the similarly-named hardware-level operations
above in that they're intended to be generic across different kinds of phiesiiees.

These two examples could be two ways of approaching design for the same collection of hardware.
Your choice, in cases like this, is to either abstract the hardware, so the objects encapsulate the real
things out there and the program is merely a list of manipulations on those things — or to organize
around some behavioral model and then embed the actual hardware manipulations that carry it out in
the flow of the behaviordbgic.

An analogous choice shows up in a lot of different contexts. Suppose you're writing MIDI sequencer
software. You could organize that code around its top level (sequencing tracks) or around its bottom
level (switching patches or samples and driving wgemerators).

A very concrete way to think about this difference is to ask whether the design is organized around its
main event loop (which tends to have the high-level application logic close to it) or around a service
library of all the operations that the main loop can invoke. A designer working from the top down will
start by thinking about the program’s main event loop, and plug in specific events later. A designer
working from the bottom up will start by thinking about encapsulating specific tasks and glue them
together into some kind of coherent order later

For a larger example, consider the design of a web browser. The top-level design of a web browser is a
specification of the expected behavior of the browser — what URL service classes like http: or ftp: or
file: it interprets, what kinds of images it is expected to be able to render, whether and with what
limitations it will acceptiavaor JavaScriptetc. The layer of the implementation that corresponds to

this top-level view is its main event loop; each time around the loop waits for, collects, and dispatches
on a user action (such as clicking a web link or typing a character into didtimn

But the web browser has to call a large set of domain primitives to do its job. One group of these is
concerned with establishing network connections, sending data over them, and receiving responses.
Another set is the operations of the GUI toolkit the browser will use. Yet a third set might be
concerned with the mechanics of parsing retrieved HTML from text into a documenttodgect

Which end of the stack you start with matters a lot, because the layer at the other end is quite likely to
be constrained by your initial choices. In particular, if you program purely from the top down, you

may find yourself in the uncomfortable position that the domain primitives your application logic
wants don’t match the ones you can actually implement. On the other hand, if you program purely
from the bottom up, you may find yourself doing a lot of work that is irrelevant to the application



logic.

Ever since the structured-programming controversies of the 1960s, novice programmers have
generally been taught that the correct approach is the top-down one — stepwise refinement, where you
specify what your program is to do at an abstract level and gradually fill in the blanks of

implementation until you have concrete working code. Top-down tends to be good practice when three
preconditions are true: (a) you can specify in advance precisely what the program is to do, (b) the
specification is unlikely to change significantly during implementation, and and (c) you have a lot of
freedom in choosing, at a low level, how the program is to get thdbjod.

These conditions tend to be fulfilled most often in programs relatively close to the user and high in the
software stack — applications programming. But even there those preconditions often fail. You can’t
count on knowing what the ’right' way for a word processor or a drawing program to behave is until
the user interface has had end-user testing. In self-defense against this, programmers try to do both
things — express the abstract specification as top-down applicationdadicapture a lot of

low-level domain primitives in functions or libraries, so they can be re-used when the high-level
designchanges.

Unix programmers inherit a tradition that is centered in systems programming, where the low-level
primitives are hardware-level operations that are fixed in character and extremely important. They
therefore lean, by learned instinct, more towards bottoqrogramming.

Whether you're a systems programmer or not, bottom-up can also look more attractive when you are
programming in an exploratory way, trying to get a grasp on hardware or software or real-world
phenomena you don't yet completely understand. Bottom-up programming gives you time and room
to refine a vague specification. Bottom-up also appeals to programmers’ natural human laziness —
when you have to scrap and rebuild code, you tend to have to throw away larger pieces if you're
working top-down than you do if you're workidgpttom-up.

Real code, therefore tends to be programmed both top-down and bottom-up. When the top-down and
bottom-up drives collide, the result is often a mess. The top layer of application logic and the bottom
layer of domain primitives have to be impedance-matched by a laggreof

One of the lessons Unix programmers have learned over decades is that glue is sticky, nasty stuff and
that it is vitally important to keep glue layers as thin as possible. Glue should stick things together, not
be used to hide cracks and unevenness ilajlees.

In the web-browser example, the glue would include the rendering code that maps a document object
parsed from incoming HTML into a flattened visual representation as a collection of bits in a display
buffer, using GUI domain primitives to do the painting. This is notoriously the most bug-prone code in
a browser. It attracts into itself kluges to address problems that originate both in the HTML parsing
(because there is a lot of ill-formed markup out there) and the GUI toolkit (which may not have quite
the primitives that are reallyeeded).

A web browser’s glue layer has to mediate not merely between specification and domain primitives,
but between several different external specifications — the network behavior standardized in HTTP,
HTML document structure, and various graphics and multimedia formats as well as the users’
behavioral expectations from tksJl.

And one single bug-prone glue layer is not the worst fate that can befall a design. A designer who is
aware that the glue layer exists, and tries to organize it into a middle layer around its own set of data
structures or objects, can end up witlo layers of glue — one above the midlayer and one below.



Programmers who are bright but unseasoned are particularly apt to fall into this trap; they’ll get each
fundamental set of classes (application logic, mid-layer, and domain primitives) right and make them
look like the textbook examples, only to flounder as the multiple layers of glue needed to integrate all
that pretty code get thicker attdcker.

The thin-glue principle could be viewed as a refinement of the Rule of Separation. Policy (the
application logic) should be cleanly separated from mechanism (the domain primitives), but if there is
a lot of code that is neither policy nor mechanism, chances are that it is accomplishing very little
besides adding global complexity to the wheystem.

Casestudy: C considered as thirglue
The C language itself is a good example of the effectiveness afitigin

In the late 1990s, Gerrit Blaauw and Fred Brooks observE€dimputer Architecture: Concepts and
Evolution[Blaauw&Brooks]that the architectures in every generation of computers, from early
mainframes through minicomputers through workstations through PCs, had tended to converge. The
later a design was in its technology generation, the more closely it approximated what Blaauw &

Brooks called the “classical architecture”; binary representation, flat address space, a distinction
between memory and working store (registers), general-purpose registers, address resolution to
fixed-length bytes, two-address instructions, big-endianism, and data types a consistent set with sizes a
multiple of either 4 or 6 bits (the 6-bit families are nextinct).

Thompsonanditchie designed C to be a sort of structured assembler for an idealized processor and
memory architecture that they expected could be efficiently modeled on most conventional computers.
By happy accident, their model for the idealized processor w&DRell,a particularly mature and
elegant minicomputer design which closely approximated Blaauw & Brooks’s classical architecture.
By good judgment, Thompson and Ritchie declined to wire into their language most of the few traits
(such as little-endian byte order) where the PDP-11 didn’t niafEh

The PDP-11 became an important model for the following generations of microprocessor

architectures. The basic abstractions of C turned out to capture the classical architecture rather neatly.
Thus, C started out as a good fit for microprocessors and, rather than becoming irrelevant as its
assumptions fell out of date, actually becanbetéerfit as hardware converged more closely on the
classical architecture. One notable example of this convergence was when the 386, with its large flat
memory-address spaces, replaced the 286’s awkward segmented-memory addressing after 1985; pure
C was actually a better fit for the 386 than it had been faz86e

It is not a coincidence that the experimental era in computer architectures ended in the mid-1980s at
the same time that C (and its close descendam) were sweeping all before them as general-purpose
programming languages. C, designed as a thin but flexible layer over the classical architecture, looks
with two decades’ additional perspective like almost the best possible design for the
structured-assembler niche it was intended to fill. In additimotopactnesgrthogonality,and

detachment (from the machine architecture on which it was originally designed) it also has the
important quality otransparencynd that we will discuss in ChapfieTransparency)The few

language designs since that are arguably better have needed to make large changes (like introducing
garbage collection) in order to get enough functional distance from C not to be swanitped by

This history is worth recalling and understanding because C shows us how powerful a clean,
minimalist design can be. ThompsomandRitchie had been less wise, they would have designed a
language that did much more, relied on stronger assumptions, never ported satisfactorily off its



original hardware platform, and withered away as the world changed out from under it. Instead, C has
flourished — and the example Thompson and Ritchie set has influenced the style of Unix development
ever since. As the writer, adventurer, artist and aeronautical engineer Antoine de Saint-Exupéry once
putit: “La perfection est atteinte non quand il ne reste rien a ajouter, mais quand il ne reste rien a
enlever.” (“Perfection in design is attained not when there is nothing more to add, but when there is
nothing more toemove”.)

The history of C is also a lesson in the value of having a working reference implemdméti@you

standardize. We'll return to this point in ChagitérPortability)when we discuss the evolution of C
and Unixstandards.

B9 A few PDP-11isms did creep into C; notably the use of octal as a default radix for certain kinds of
literals, and signed characters (the latter being a legacy of the botched PDP-11 MOVB instruction,
which sign-extended itsperand).



Library layering

If you are careful and clever about design, it is often possible to partition a program so that it consists
of a user-interface-handling main section (policy) and a collection of service routines (mechanism)
with effectively no glue at all. This is especially appropriate when the program has to do a lot of very
specific manipulations of data structures like graphic images, network-protocol packets, or control
blocks for a hardwarterface.

Under Unix, it is normal practice to make this layering explicit, with the service routines collected in a
library which is separately documented. In such programs, the front end gets to specialize in
user-interface considerations and high-level protocol. With a little more care in design, it may be
possible to detach the original front end and replace it with others adapted for different purposes.
Some other advantages should become evident from oustcalye

An important form of library layering is th@ugin, a library with a set of known entry points that is
dynamically loaded after startup time to perform a specialized task. For plugins to work, the calling
program has to be organized largely as a documented service library that the plugin can itdath.back

Casestudy: GIMP plugins

The GIMP (Gnu Image Manipulatigrogram)is a graphics editor designed to be driven through an
interactive GUI. But GIMP is built as a library of image-manipulation and housekeeping routines
called by a relatively thin layer of driver code. The driver code knows about the GUI, but not directly
about image formats; the library routines reveinie

The library layer is documented (and, in fact shipped as “libgimp” for use by other programs). This
means that C programs called “plugins” can be dynamically loaded by GIMP and call the library to do
image manipulation, effectively taking over control at the same level as the Ul. A registry of GIMP
plugins is available on the World Witféeb.

Figure 4.2. Caller/callee relationships in GIMP with a pluginloaded.

plugin

a1 libgimp

GIME

Though most GIMP plugins are small, sim@lgprograms, it is also possible to write a plugin that
exposes the library API to a scriptitlmguagewe’ll discuss this possibility in Chap

Interfacedwhen we examine the ‘polyvalent prograpattern.



Unix and object-orientedlanguages

Since the mid-1980s most new language designs have included native supguedboriented
programming(OQO). Recall that in object-oriented programming, the functions that act on a particular
data structure are encapsulated with the data in an object that can be treated as a unit. By contrast,
modules in non-O0 languages make the association between data and the functions that act on it rather
accidental, and modules frequently leak data or bits of their internals intotbach

The OO design concept initially proved valuable in the design of graphics systems, graphical user
interfaces, and certain kinds of simulation. To the surprise and gradual disillusionment of many, it has
proved hard to demonstrate significant benefits of OO outside those areas. It's worth trying to
understanavhy.

There is some tension and conflict between the Unix tradition of modularity and the usage patterns that
have developed around OO languages. Unix programmers have always tended to be a bit more
skeptical about OO than their counterparts elsewhere. Part of this is because of the Rule of Diversity;
OO has far too often been promoted as the One True Solution to the software-complexity problem. But
there is something else behind it as well, an issue which is worth exploring as background before we

evaluate specific OO (object-oriented) languages in CHaptgranguages)lt will also help throw
some characteristics of the Unix style of non-OO programming into shretiedr

We observed above that the Unix tradition of modularity is one of thin glue, a minimalist approach
with few layers of abstraction between the hardware and the top-level objegogfam.

Part of this is the influence of C. It takes serious effort to simulate true objects in C. Because that'’s so,
piling up abstraction layers is an exhausting thing to do. Thus, object hierarchies in C tend to be
relatively flat andransparenteven when Unix programmers use other languages, they tend to want to
carry over the thin-glue/shallow-layering style that Unix models have téugint

OO languages make abstraction easy — perhaps too easy. They encourage architectures with thick
glue and elaborate layers. This can be good when the problem domain is truly complex and demands a
lot of abstraction, but it can backfire badly if coders end up doing simple things in complex ways just
because thegan.

All OO languages show some tendency to suck programmers into the trap of excessive layering.
Object frameworks and object browsers are not a substitute for good design or documentation, but they
often get treated as one. Too many layers destaogparencyand — it becomes too difficult to see

down through them and mentally model what the code is actually doing. The Rules of Simplicity,
Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and
continuing maintenangaroblems.

This tendency is probably exacerbated because a lot of programming courses teach thick layering as a
way to satisfy the Rule of Representation — in this view, having lots of classes is equated with having
smart data. The problem with this is that too often, the ‘smart data’ in the glue layers is not actually
about any natural entity in whatever the program is manipulating — it's just about being glue. (One
sure sign of this is a proliferation of abstract subclass&sixins’)

Another side-effect of OO abstraction is that opportunitiegfitimizationtendo disappear. For

example, a+a+a+a can become a*4 and even a<<2 if a is an integer. But if one creates a class with
operators, there is nothing to indicate if they are commutative, distributive, or associative. Since one
isn't supposed to look inside the object, it's not possible to know which of two equivalent expressions



is more efficient. This isn't in itself a good reason to avoid using OO techniques on new projects; that
would be prematureptimization.But it is reason to think twice before transforming non-OO code
into a classierarchy.

Unix programmers tend to share an instinctive sense of these problems. This appears to be one of the
reasons that, under Unix, OO languages have failed to displace non-OO workhorSeRdiHgand

shell. There is more vocal criticism of OO in the Unix world than orthodoxy permits elsewhere, and
Unix programmers who do use OO languages spend more effort on trying to keep their object designs
uncluttered. As Michael Padlipsky once observed in a slightly different c{fR@Xipsky} “If you

know what you're doing, three layers is enough; if you don’t, even seventeen levelsi@ipri't

One reason that OO has succeeded most where it has (GUIs, simulation, graphics) may be because it’s
relatively difficult to get the ontology of types wrong in those domains. In GUIs and graphics, for
example, there is generally a rather natural mapping between manipulable visual objects and classes. If
you find yourself proliferating classes that have no obvious mapping to what goes on on the display, it
is correspondingly easy to notice that the glue has gottehitdo

One of the central challenges of design in the Unix style is how to combine the virtue of detachment
(simplifying and generalizing problems from their original context) with the virtue of thin glue and
shallow, flat, transparent hierarchies of code deslgnand.

We’'ll return to some of these points and apply them when we discuss object-oriented languages in

ChaptelZ(Language3)



Coding for modularity

Modularity is expressed in good code, but it primarily comes from good design. Here are some
questions to ask about any code you work on that might help you improvedtsarity:

How many global variables does it have? Global variables are modularity poison, an easy way for
components to leak information to each other in careless and promiscuou§fiays.

Is the size of your individual modules in Hatton’s sweet spot? If your answer is “No, many are
larger”, you may have a long-term maintenance problem. Do you know what your own sweet
spot is? Do you know what it is for other programmers you are cooperating with? If not, best be
conservative and stick to sizes near the low end of Hattanse.

Are the individual functions in your modules too large? This is hot so much a matter of line count
as internal complexity. If you can’t informally describe a function’s contract with its callers in
one line, the function is probably tterge B4 .

Does your code have internal APIs — that is, collections of function calls and data structures that
you can describe to others as units, each sealing off some layer of function from the rest of the
code? A good API makes sense and is understandable without looking at the implementation
behind it. The classic test is this: try to describe it to another programmer over the phone. If you
fail, it is very probably too complex, and poodgsigned.

What is the distribution of the number of entry points per module acropsdjeet® Does it
seem uneven? Do the modules with lots of entry points really needdhg?

The reader might find it instructive to compare these with our checklist of questions about

transparencyanddiscoverabilityinChaptef (Modularity)

B9 Globals also mean your code cannot be re-entrant; multiple instances in the same runtime are
likely to step on eachther.

B4 Many years ago, the author learned from Kernighan & PlaugieesElements of Programming
Stylea useful rule. Write that one-line comment immediately after the prototype of your function. For
everyfunction, withoutexception.

Y A cheap way to collect this information is to analyze the tags files generated by a utility like
etags(1) octags(1).



Chapter 5. Textuality

Good Protocols Make Good Practice
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It's a well known fact that computing devices such as the abacus were invented
thousands of years ago. But it's not well known that the first use of a common
computer protocol occurred in the Old Testament. This, of course, was when
Moses aborted the Egyptians’ process witloatrol-sea...

--Tom Galloway

In this chapter, we’ll look at what the Unix tradition has to tell us about two different kinds of design

that are closely related; the design of file formats for retaining application data in permanent storage,
and the design of application protocols for passing data and commands between cooperating programs,
possibly over ametwork.

What unifies these two kinds of design is that they both involve the serialization of in-memory data
structures. For the internal operation of computer programs, the most convenient representation of a
complex data structure is one in which all fields have the machine’s native data format (e.g.,
two’s-complement binary for integers) and all pointers are actual memory addresses (as opposed, say,
to being named references). But these representations are not well suited to storage and transmission;
memory addresses in the data structure lose their meaning outside of memory, and emitting raw native
data formats causes interoperability problems passing data between machines with different
conventions (big vs. little-endian, say, or 32-bit&4:bit).



For transmission and storage, the traversable, quasi-spatial layout of data structures like linked lists
needs to be flattened or serialized into a byte-stream representation from which the structure can later
be recovered. The serialization (save) operation is sometimes rwatstallingand its inverse (load)
operationunmarshalling These terms are usually applied with respect to objects@Odanguage

like C++ or Pythonor Java,but could be used with equal justice of operations like loading a graphics

file into the internal storage of a graphics editor and storing it outrafidifications.

A significant percentage of wh@&tandC++ programmers maintain is ad-hoc code for marshalling and
unmarshalling operations — even when the serialized representation chosen is as simple as a binary
structure dump (a common technique under non-Unix environments). Modern languaBgthicke
andJavatend to have built-in unmarshal and marshal functions that can be applied to any object or
byte-stream representing an object which reduce this talistantially.

But these naive methods are often unsatisfactory for various reasons, including both the
machine-interoperability problems we mentioned above and the negative trait of being opaque to other
tools. When the application is a network protocol, economy may demand that an internal data structure
(such as, say, a message with source and destination addresses) be serialized not into a single blob of
data but into a series of attempted transactions or messages which the receiving machine may reject
(so that for example, a large message can be rejected if the destination adiovabd)is

Interoperability transparencynd,extensibility,and storage or transaction economy; these are the
important themes in designing file formats and application protocols. Interoperability and transparency
demand that we focus such designs on clean data representations, rather than putting convenience of
implementation or highest possible performance first. Extensibility also favors textual protocols, as
binary ones are often harder to extend or subset cleanly. Transaction economy sometimes pushes in the
opposite direction — but we shall see that putting that criterion first is a form of premature
optimizationthatt is often wise to resist.

Finally, we must note a difference between data file formats and the run-control files that are often
used to set the startup options of Unix programs. The most basic difference is that (with sporadic
exceptions like GNU Emacs’s configuration interface) programs don’t normally modify their own
run-control files — the information flow is one-way, from file read at startup time to application
settings. Data file formats, on the other hand, associate properties with named resources and are both
read and written by theapplications.

Historically, Unix has different sets of conventions for these two kinds of representation. The
conventions for run control files are surveyed in ChapddConfiguration) only conventions for data
files are examined in thishapter.




The Importance of BeingTextual

Pipes and sockets will pass binary data as well as text. But there are good reasons the examples we’ll
see in Chaptégs (Multiprogramming)are textual; reasons which hark back to DMaiiroy’sadvice

quoted in Chaptdt (Philosophy)) Text streams are a valuable universal format because they're easy

for human beings to read, write, and edit without specialized tools. These formats are (or can be
designed to beyansparent.

Also, the very limitations of text streams help enforce encapsulation. By discouraging elaborate
representations with rich, densely-encoded structure, they also discourage programs from being
promiscuous with each other about their internal states. We'll return to this point at the end of Chapter
[6 (Multiprogramming)when we discusRPC.

When you feel the urge to design a complex binary file format, or a complex binary application
protocol, it is generally wise to lie down until the feeling passes. If performance is what you're
worried about, implementing compression on the text protocol stream either at some level below or
above the application protocol will give you a cleaner and perhaps better-performing design than a
binary protocol (text compresses well, apdckly).

The only good justification for a binary protocol is if you're going to be manipulating large enough

data sets that you're genuinely worried about getting the most bit-density out of your media, or if
you're very concerned about the time or instruction budget required to interpret the data into an in-core
structure.

The reciprocal problem with SMTP or HTTP-like text protocols is that they tend
to be expensive in bandwidth and slow to parse. The smallest X request is 4 bytes:
the smallest HTTP request is about 100 bytes. X requests, including amortized
overhead of transport, can be executed in the order of 100 instructions; at one
point, anApachedeveloper proudly indicated they were down to 7000
instructions. For graphics, bandwidth becomes everything on output; hardware is
designed such that these days the AGP bilreisottleneck for small operations,
so any protocol had better be very tight if it is not to be a worse bottleneck. This is
the extremease.

--Jim Gettys

These concerns are valid in other extreme cases as well as X — for example, in the design of graphics
file formats intended to hold very large images. But they are usually just another case of
premature-optimizationfevefextual formats don’t necessarily have much lower bit density than

binary ones; they do after all use seven out of eight bits per byte. And what you gain by not having to
parse text, you generally lose the first time you need to generate a test load, or to eyeball a
program-generated example of your format and figure out what®ie.

In addition, the kind of thinking that goes into designing tight binary formats tends to fall down on
making them cleanly extensible. The X designers experighied

Against the current X framework is the fact we didn’t design enough of a
structure to make it easier to ignore trivial extensions to the protocol; we can do
this some of the time, but a bit better framework would have geed.

--Jim Gettys



When you think you have an extreme case that justifies a binary file format or protocol, you need to
think very carefully abougxtensibilityandeaving room in the design fgrowth.

Casestudy: Unix password fileformat

On many operating systems, the per-user data required to validate logins and start a user’s session is an
opague binary database. Under UNIX, by contrast, it's a text file with records one per line and
colon-separatefields.

some randomly-chosen examptes:
Example 5.1. Password filexample

games:*:12:100:games:/usr/games:
gopher:*:13:30:gopher:/usr/lib/gopher-data:
ftp:*:14:50:FTP User:/home/ftp:
esr:0SmFuPnH5JINs:23:23:Eric S. Raymond:/home/esr:
nobody:*:99:99:Nobody:/:

Without even knowing anything about the semantics of the fields, we can notice that it would be hard
to pack the data much tighter in a binary format. The colon sentinel characters would have to have
functional equivalents taking at least as much space (usually either count bytes or NULSs). The per-user
records would either have to have terminators (which could hardly be shorter than a single newline) or
else be wastefully padded out to a fixedgth.

The only place to tighten up would be the numeric fields, by collapsing the numerics to single bytes
and the password strings in an 8-bit encoding. On this example, that would give about a 9% size
decrease.

That 9% of putative inefficiency buys us a lot. It avoids putting an arbitrary limit on the range of the
numeric fields. It gives us the ability to modify the password file with any old text editor of our choice,
rather than having to build a specialized tool to edit a binary format. And it gives us the ability to do
ad-hoc searches and filters and reports on the user account information with text-stream tools such as

grep(1).

The fact that structural information is conveyed by field position rather than an explicit tag makes this
format faster to read and write, but a bit rigid. If the set of properties associated with a key is expected
to change with any frequency, one of the tagged formats described below might bechbieger

Economy is not a major issue with password files to begin with, as they’'re normally read only once
per user session at login time and infrequently modified. Interoperability is not an issue, since various
data in the file (notably user and group numbers) is not portable off the originating machine. For
password files, it's therefore quite clear that going where the transpamitecypn and leads was the

right thing.

Casestudy: .newsrcformat

Usenemews is a worldwide distributed bulletin-board system that anticipated today’s P2P networking
by two decades. It uses a message format very similar to that of RFC822 electronic-mail messages,
except that instead of personal recipients messages are sent to topic groups. Articles posted at any
participating site are broadcast to each site that it has registered as a neighbor, and eventually flood-fill
to all newssites.



Almost all Usenet news readers understandrieesrc  file, which records which Usenet messages
have been seen by the calling user. Though it is named like a run-control file, it is not only read at
startup but typically updated at the end of the newsreader runn@herc format has been fixed
since the first newsreaders around 1@#ample5.3is a representative section froomawsrc file.

Example 5.2. A .newsrexample

rec.arts.sf.misc! 1-14774,14786,14789

rec.arts.sf.reviews! 1-2534

rec.arts.sf.written: 1-876513

news.answers! 1-199359,213516,215735

news.announce.newusers! 1-4399

news.newusers.questions! 1-645661

news.groups.questions! 1-32676

news.software.readers! 1-95504,137265,137268,137274,140059,140091,140117
alt.test! 1-1441498

Each line sets properties for the newsgroup named in the first field. The name is immediately followed
by a character which indicates whether the owning user has subscribed to the group or not; a colon
indicates subscription, and an exclamation mark indicates non-subscription. The remainder of the line
is a sequence of comma-separated article numbers or ranges of article numbers, indicating which
articles the user hagen.

Non-Unix programmers might have automatically tried to design a fast binary format in which each
newsgroup status was described by either a long but fixed-length binary record, or a sequence of
self-describing binary packets with internal length fields. The main point of such a binary
representation would be to express ranges with binary data in paired word-length fields, in order to
avoid the overhead of parsing all the range expressitaraip.

Such a layout could be read and written faster than a textual format, but it would have other problems.
A naive implementation in fixed-length records would have placed artificial length limits on

newsgroup names and (more seriously) on the maximum number of ranges of seen-article numbers. A
more sophisticated binary-packet format would avoid the length limits, but could not be edited with

the user’s eyeballs and fingers — a capability that can be quite useful when you want to reset just
some of the read bits in an individual newsgroup. Also, it would not necessarily be portable to

different machinaypes.

The designers of the original newsreader chi@esparencyand and interoperability over economy.

The case for going in the other direction was not completely ridiculoesssrc — files can get very

large, and one modern reader (GNOME’s Pan) uses a speed-optimized private format to avoid startup
lag. But to other implementors, textual representation looked like a good tradeoff in 1980, and has
looked better as machines increased in speed and storage droppee.in

Casestudy: The PNG graphics fileformat

PNG (Portable Network Graphics) is a file format for bit-rgegphicslt is like GIF, and unlike JPG,

in that it uses lossless compression and is optimized for applications such as line art and icons rather
than photographic images. Documentation and open-source reference libraries of high quality are
available at thfPortable Network Graphiasebsité

PNG is an excellent example of a thoughtfully designed binary format. A binary format is appropriate
since graphics files may contain very large amounts of data, such that storage size and Internet
download time would go up significantly if the pixel data were stored textually. Transaction economy


http://www.libpng.org/pub/png/

was the prime consideration, witlansparencynd sacrificed. The designers were, however, careful
about interoperability; PNG specifies byte orders, integer word lengths, endianness, and (lack of)
padding betweefields.

A PNG file consists of a sequence of chunks, each in a self-describing format beginning with the
chunk type name and the chunk length. Because of this organization, PNG does not need a release
number. New chunk types can be added at any time; the chunk type name informs PNG-using
software whether or not each chunk can be s&jelyred.

The PNG file header also repays study. It has been cleverly designed to make various common kinds
of file corruption (e.g., by 7-bit transmission links, or mangling of CR and LF characters) easy to
detect.

The PNG standard is precise, comprehensive, and well written. It could serve as a model for how to
write file formatstandards.



Data file metaformats

A data file metaformat is a set of syntactic and lexical conventions that is either formally standardized
or sufficiently well established by practice that there are standard service libraries to handle
marshalling and unmarshallirity

Unix has evolved or adopted metaformats suitable for a wide range of applications. It is good practice
to use one of these (rather than an idiosyncratic custom format) wherever possible. The benefits begin
with the amount of custom parsing and generation code that you may be able to avoid writing by using
a service library. But the most important benefit is that developers and even many users will instantly
recognize these formats and feel comfortable with them, which reduces the friction costs of learning
newprograms.

In the following discussion, when we refer to “traditional Unix tools” we are intending the
combination of grep(1), sed(1), awk(1) and tr(1) for doing text searches and transfornRaitanrsd
other scriptinganguagesend to have good native support for parsing the line-oriented formats that
these tool€ncourage.

/etc/passwdstyle

Our first case study in textual data metaformats wagetbfpasswd file. This format (one record

per line, colon-separated fields) is very traditional under Unix and frequently used for tabular data.
Other classic examples include tfleéc/group  file describing security groups and the

[etc/inittab file used to control startup and shutdown of Unix service programs at different run
levels of the operating system.

Data files in this style are expected to support inclusion of colons in the data fields via backslash
escaping. More generally, code that reads them is expected to support record continuation by ignoring
backlash-escaped newlines, and to allow embedding non-printable character data via C-style backslash
escapes.

This format is most appropriate when the data is tabular, keyed by a name (in the first field), and
records are predictably short (less than 80 characters long). It works well with traditionddJsnix

This format is to Unix what CSV (comma-separated value) format is under Microsoft Windows and
elsewhere outside the Unix world. CSV (fields separated by commas, double quotes used to escape
commas, no continuation lines) is rarely found urdieix.

RFC-822format

The RFC-822 metaformat derives from the textual format of Internet electronic mail messages;
RFC822 is the original Internet RFC describing this format (since superseded by RFC2822). The
MIME (Multipurpose Internet Medi&xtension)provides a way to embed typed binary data within
RFC822-format messages. (Web searches on either of these names will turn up thestalelamis.)

In this metaformat, record attributes are stored one per line, named by tokens resembling mail
header-field names and terminated with a colon followed by whitespace. Field names do not contain
whitespace; conventionally a dash is substituted instead. The attribute value is the entire remainder of
the line, exclusive of training whitespace and newline. A physical line that begins with tab or
whitespace is interpreted as a continuation of the current |digieal



A blank line may be interpreted either as a record terminator or as an indication that unstructured text
follows.

Under Unix, this is the traditional and preferred textual metaformat for attributed messages or anything
that can be closely analogized to electronic mail. Usessuses it; so do the HTTP 1.1 (and later)
formats used by the World Wide Web. It is very convenient for editing by humans. Traditional Unix
search tools are still good for attribute searches, through finding record boundaries will be a little more
work than in a record-per-lifermat.

For examples of this format, look in yomailbox.

Fortune-cookieformat

Fortune-cookie format is used by the fortune(1) program for its database of random quotes. It is
appropriate for records that are just bags of unstructured text. It simply uses % followed by newline (or
sometimes %% followed by newline) as a record sepafatample5.3is an example section from a

file of email signatureguotes:

Example 5.3. A fortune fileexample

"Among the many misdeeds of British rule in India, history will look
upon the Act depriving a whole nation of arms as the blackest."

-- Mohandas Gandhi, "An Autobiography", pg 446
%
The people of the various provinces are strictly forbidden to have in their
possession any swords, short swords, bows, spears, firearms, or other types
of arms. The possession of unnecessary implements makes difficult the
collection of taxes and dues and tends to foment uprisings.

-- Toyotomi Hideyoshi, dictator of Japan, August 1588
%
"One of the ordinary modes, by which tyrants accomplish their purposes
without resistance, is, by disarming the people, and making it an
offense to keep arms."

-- Constitutional scholar and Supreme Court Justice Joseph Story, 1840

It is good practice to accept whitespace after % when looking for record delimiters. This helps cope
with human editingnistakes.

Fortune-cookie record separators combine well with the RFC-822 metaformat for records. If you need
a textual format that will support multiple records with a variable repertoire of explicit fieldnames, one
of the least surprising and human-friendliest ways to do it would loofekkenple5.4

Example 5.4. Three planets in an RFC822-likeormat

Planet: Mercury
Orbital-Radius: 57,910,000
Diameter: 4,880 km

Mass: 3.30e23 kg

%

Planet: Venus
Orbital-Radius: 108,200,000 km
Diameter: 12,103.6 km
Mass: 4.869e24 kg

%

Planet: Earth



Orbital-Radius: 149,600,000
Diameter: 12,756.3 km
Mass: 5.972e24 kg

Moons: Luna

Of course, the record delimiter could be a blank line, but a line consisting of "%\n" is more explicit
and less likely to be introduced by accident during editing. In a format like this it is good practice to
simply ignore blankines.

XML

XML is well-suited for complex data formats (the sort of things that the old-school Unix tradition

would use an RFC-822-like stanza format for) though overkill for simpler ones. It is especially
appropriate for formats that have a complex nested or recursive structure of the sort that the RFC-822
metaformat does not handle well. For a good introduction to the formatMie& ANutshell
[[Harold&Means]|

XML has a very simple syntax resembling HTML's — angle-bracketed tags and ampersand-led literal
sequences. It is about as simple as a plain-text markup can be and yet express recursively nested data
structures. XML is just a low-level syntax; it requires a document type definition (such as XHTML)

and associated application logic to givegmantics.

is a simple example of an XML-based configuration file. It is part of the kdeprint tool
shipped with the open-source KDE office suite hosted undex. It describes options for an an
image-to-Postscript filtering operation, and how to map them into arguments for a filter command. For
another instructive example, see the discussion of Glade in Cpd@eneratior])

Example 5.5. An XML example

<?xml version="1.0"?>
<kprintfilter name="imagetops">
<filtercommand data="imagetops %filterargs %filterinput %filteroutput” />
<filterargs>
<filterarg name="center"
description="Image centering"
format="-nocenter" type="bool" default="true">
<value name="true" description="Yes" />
<value name="false" description="No" />
<[filterarg>
<filterarg name="turn"
description="Image rotation"
format="-%value" type="list" default="auto">
<value name="auto" description="Automatic" />
<value name="noturn" description="None" />
<value name="turn" description="90 deg" />
<[filterarg>
<filterarg name="scale"
description="Image scale"
format="-scale %value"
type="float" min="0.0" max="1.0" default="1.000" />
<filterarg name="dpi"
description="Image resolution"
format="-dpi %value"
type="int" min="72" max="1200" default="300" />
<ffilterargs>
<filterinput>
<filterarg name="file" format="%in" />



<filterarg name="pipe" format="" />
<[filterinput>
<filteroutput>
<filterarg name="file" format="> %out" />
<filterarg name="pipe" format="" />
<ffilteroutput>
</kprintfilter>

The most serious problem with XML is that it doesn’t play well with traditional Unix tools. Software

that wants to read an XML format needs an XML parser; this means bulky, complicated programs, and
may even restrict your choice of language when you write programs that want to read or generate your
format.

One application area where XML is clearly winning is in markup formats for document files (we’ll
have more to say about this in Chafité(Documentatior)) Tagging in such documents tends to be
relatively sparse among large blocks of plain text; thus, traditional Unix tools still work fairly well for
simple text searches atrdnsformations.

One interesting bridge between these worlds is PYX format — a line-oriented translation of XML that
can be hacked with traditional line-oriented Unix text tools and then losslessly translated back to
XML. A web search for “Pyxie” will turn upesources.

XML can be a simplifying choice or a complicating one. There is a lot of hype surrounding it, but
don’t be a fashion victim by either adopting or rejecting it uncritically. Choose carefully and bear the
KISS principle inmind.

Windows INI format

Many Microsoftwindowsprograms use a textual data format that lookdEkample5.8 This

example associates optional resources named ‘account’, ‘directory’, ‘numeric_id’, and ‘developer’
with named projects ‘python’, ‘sng’, ‘fetchmail’, and ‘py-howto’. The DEFAULT entry supplies
values that will be used when a named entry fails to suppiy.

Example 5.6. A .INI file example

[DEFAULT]
account = esr

[python]
directory = /home/esr/cvs/python/

developer =1

[sng]

directory = /home/esr/WWW/sng/
numeric_id = 1012

developer =1

[fetchmail]
numeric_id = 18364

[py-howto]

account = eric

directory = /home/esr/cvs/py-howto/
developer =1



This style of data file format is not native to Unix, but some Linux programs support it under
Windows'’s influence. This format is readable and not badly designed, but is not widely supported by
Unix tools. Like XML it doesn’t play well with grep(1) or conventional Unix scripting tools. If you are
willing to accept these limitations, using an XML format would probably be a ledizr

Unix textual file format conventions

There are longstanding Unix traditions about how textual data formats ought to look. Most of these
derive from one or more of the standard metaformats we’ve just described. It is wise to follow these
unless you have strong and specific reasons tldmwise.

® One record per newline-terminated linepdssible.This makes it easy to extract records with
text-stream tools. For data interchange with other operating systems, it's wise to make your
file-format parser indifferent to whether the line ending is LF or LF-CR. It’s also conventional to
ignore trailing whitespace in such formats; this protects against commonhexities.

e |ess than 80 chars per line pbssible. This makes the format browseable in an ordinary-sized
terminal window. If many records must be longer than 80 characters, consider a stanza format
(seebelow).

® Support the backslasionventionThe standard way to support embedding non-printable control
characters is by parsing C-like backslash escapes — \n for a newline, \r for a carriage return, \t for
a tab, \b for backspace, \f for formfeed, \onn or \Onn for the octal character with value nn, \xnn for
the hex character with value nn, \\ for a litdratkslash.

® In one-record-per-line formats, use colon as a fedgarator.This convention seems to have
originated with the Unix password file. If your fields must contain colons, use a backslash as the
prefix to escapéhem.

® Do not allow the distinction between tab and whitespace sigmificant. This is a recipe for
serious headaches when the tab settings on your users’ editors are different; more generally, it's
confusing to the eye. Using tab as a field separator is especially likely toprabkems.

® Favor hex ovepctal. Hex-digit pairs and quads are easier to eyeball-map into bytes and words
than octal digits of three bits each; also marginally more efficient. This rule needs emphasizing
because some older Unix tools such as od(1) violate it; that's a legacy from the field sizes in
PDP-11machindanguage.

® [For complex records, use a ‘stanza’ format: multiple lines per record, with a record separator
line of %%)\n or%\n. The separators make useful visual boundaries for human beings eyeballing
thefile.

® |n stanza formats, either have one record field per line or use a record format resembling
RFC822 electronic-mail headers, with colon-terminated field-name keywords |daditsgThe
second choice is appropriate when fields are often either absent or longer than 80 characters, or
when records are sparse (often misgielgls).

® |n stanza formats, support lim@ntinuation.When interpreting the file, either discard backslash
followed by whitespace or fold newline followed by whitespace to a single space, so that a long
logical line can be folded into short (easily editable!) physical lines. It's also conventional to
ignore trailing whitespace in these formats; this protects against commorbetitdes.



e Either include a version number or design the format as self-describing chunks independent of
eachother.If there is even the faintest possibility that the format will have to be changed or
extended, include a version number so your code can conditionally do the right thing on all versions.
Alternatively, design the format as self-describing chunks so that new chunk types can be added
without instantly breaking old code.

e Beware of floating-point roundofiroblems.Conversion of floating-point numbers from binary to
text format and back can lose precision, depending on the quality of the conversion library you are
using. If the structure you are marshalling/unmarshalling contains floating point, you should test the
conversion in both directions and, if it looks like conversion in either direction is subject to roundoff
errors, be prepared to dump the floating-point field as raw binary instead, or a hex encoding thereof.
The binary dump may even be portable if both machines implement the IEEE floatingtandsrd.

In Chapte[l0 (Configuration)we will discuss a different set of conventions used for program
run-controffiles.




Application protocol design

In chaptel6 (Multiprogramming)) we’ll discuss the advantages of breaking complicated applications
up into cooperating processes speaking an application-specific command set or protocol with each
other. All the good reasons for data file formats to be textual apply to these application-specific
protocols asvell.

When your application protocol is textual and easily parsed by eyeball, many good things become
easier. Transaction dumps become much easier to interpret. Test loads becomeved@sier to

Server processes are often invoked by harness programs such as inetd(8) in such a way that the server
sees commands on standard input and ships responses to standard output. We describe this “CLI
server” pattern in more detail in Chaptdr (Usernterfaces)

A CLI server with a command set that is designed for simplicity has the valuable property that a
human tester will be able to type commands direct to the server process in order to probe the
software’s behavior. Test loads will be easy to write, and test frameworks easy to build. These virtues
can substantially reduce the overhead of your test-dejatlg.

Another very important issue is avoiding round trips as much as possible. Every protocol transaction
that requires a handshake turns any latency in the connection into a potentially serious slowdown.
Avoiding such handshakes is not specifically a Unix-tradition practice, but it's one that needs mention
here because so many protocol designs lose huge amounts of perfornthaoe to

| also cannot say enough about latency. X11 went well beyond X10 in avoiding
round trip requests: the Render extension goes even further. X (and these days,
HTTP/1.1) is a streaming protocol. For example, on my laptop, | can execute over
4 million 1x1 rectangle requests (8 million no-op requests) per second. But round
trips are hundreds or thousands of times more expensive. Anytime you can get a
client to do something without having to contact the server, you have a
tremendousvin.

--Jim Gettys

A third issue to bear in mind is the end-to-end design principle. Every protocol designer should read
the classi€nd-to-End Arguments In Syst@asigr[Seltzer el.] There are often serious questions
about which level of the protocol stack should handle features like security and authentication; this
paper helps provide some good conceptual tools for thinking Himt

The traditions of Internet application protocol design evolved separately from Unix befor&3980
Since the 1980s these traditions have become thoroughly naturalized inforatiize.

We'll illustrate the Internet style by looking at three application protocols that are both among the
most heavily used, and are widely regarded among Internet hackers as paradigmatic; SMTP, POP3,
and IMAP. All three address different aspects of mail transport (one of the net’s two most important
applications, along with the World Wide Web), but the problems they address (passing messages,
setting remote state, indicating error conditions) are generic to non-email application protocols as well
and are normally addressed using simiahniques.



Casestudy: SMTP, a simple sockeprotocol

is an example transaction in SMTP (Simple Mail Transfer Protocol), which is described
by RFC 2821. In the example below, C: lines are sent by a mail transport agent (MTA) sending mail,
and S: lines are returned by the MTA receiving it. Text after ;; is comments, not part of the actual
transaction.

Example 5.7. An SMTP sessioexample

: <client connects to service port 25>

: HELO snark.thyrsus.com ;; sending host identifies self
: OK Hello snark, glad to meet you ;; receiver acknowledges

: MAIL FROM <esr@thyrsus.com> ;; identify sending user
: 250 <esr@thyrsus.com>... Sender ok ;; receiver acknowledges
RCPT TO: cor@cpmy.com ;; identify target user

: 250 root... Recipient ok ;; receiver acknowledges

DATA

: 354 Enter mail, end with "." on a line by itself

: Scratch called. He wants to share

: a room with us at Balticon.

. :; End of multi-line send

: 250 WAA01865 Message accepted for delivery

QUIT ;; sender signs off

: 221 cpmy.com closing connection ;; receiver disconnects

: <client hangs up>

OVOVLONOVOVOVOWOOD

This is how mail is passed among Internet machines. Note the following features: command-argument
format of the requests, responses consisting of an error code followed by an informational message,
the fact that the payload of the DATA command is terminated by a line consisting of alsingle

SMTP is one of the two or three oldest application protocols still in use on the Internet. It is simple,
effective, and has withstood the test of time. The traits we have called out here are tropes that recur
frequently in other Internet protocols. If there any single archetype of what a well-designed Internet
application protocol looks like, SMTPiis

Casestudy: POP3, the Post Officd’rotocol

Another one of the classic Internet protocols is POP3, the Post Office Protocol. It is also used for mail
transport, but where SMTP is a 'push’ protocol with transactions initiated by the mail sender, POP3 is
a 'pull’ protocol with transactions intiated by the mail receiver. Internet users with intermittent access
(like dial-up connections) can let their mail pile up on an ISP’s maildrop machine, then use a POP3
connection to pull mail up the wire to their persamalchines.

is an example POP3 session. In the example below, C: lines are sent by the client, and S:
lines by the mail-server. Observe the many similarities with SMTP. This protocol too is textual and
line-oriented, sends payload message sections terminated by a line consisting of a single dot followed
by line terminator, and even uses the same exit command, QUIT. Like SMTP, each client operation is
acknowledged by a reply line that begins with a status code and includes an informational message
meant for humaeyes.

Example 5.8. A POP3 examplsession



There are a few differences. The most obvious one is that POP3 uses status tokens rather than SMTP’s
3-digit error codes. Of course the requests have different semantics. But the family resemblence (one
we’ll have more to say about when we discuss the generic Internet metaprotocol later in this chapter)

OVOVOVLNLLOVOVNLLOLLLLOVONOVWO WO

: <client connects to service port 110>

: +OK POP3 server ready <1896.697170952@mailgate.dobbs.org>
: USER bob

: +OK bob

: PASS redqueen

: +OK bob’s maildrop has 2 messages (320 octets)

STAT

:+0OK 2 320

LIST

: +OK 2 messages (320 octets)

1120
2200

RETR 1

1 +OK 120 octets
: <the POP3 server sends the text of message 1>

:DELE 1
: +OK message 1 deleted

RETR 2

: +OK 200 octets
: <the POP3 server sends the text of message 2>

: DELE 2

: +OK message 2 deleted

S QUIT

: +OK dewey POP3 server signing off (maildrop empty)
: <client hangs up>

is clear.

Casestudy: IMAP, the Internet Message AccesProtocol

To complete our triptych of Internet application protocol examples, we’ll look at IMAP, another post
office protocol designed in a slightly different style. as before, C: lines are sent by
the client, and S: lines by the mail-server. Text after ;; is comments, not part of théraogaadtion.

Example 5.9. An IMAP sessiorexample

VLOVLVLOVLLLLLOVLLOWVO

: <client connects to service port 143>

:* PREAUTH [151.134.42.0] IMAP4revl v12.264 server ready
: A0O001 CAPABILITY

. * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE SCAN SORT AUTH=LOGIN
: AO001 OK CAPABILITY completed

1 A0002 SELECT "INBOX"

1 * 1EXISTS

:* 1 RECENT

1 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

. * OK [UNSEEN 1] first unseen message in /var/spool/mail/esr

: A0002 OK [READ-WRITE] SELECT completed

: AO003 FETCH 1 RFC822.SIZE ;; Get message sizes
:* 1 FETCH (RFC822.SIZE 2545)

: AO003 OK FETCH completed

: A0004 FETCH 1 RFC822.HEADER ;; Get first message header
:*1 FETCH (RFC822.HEADER {1425}

)



S: A0004 OK FETCH completed

C: A0005 FETCH 1 BODY[TEXT] ;) Get first message body
S:* 1 FETCH (BODY[TEXT] {1120}

<server sends 1120 octets of message payload>

S:)

S:* 1 FETCH (FLAGS (\Recent \Seen))

S: A0005 OK FETCH completed

C: A0O006 LOGOUT

S: * BYE hurkle.thyrsus.com IMAP4rev1 server terminating connection
S: A0006 OK LOGOUT completed

C: <client hangs up>

IMAP delimits payloads in a slightly different way. Instead of ending the playload with a dot, the
payload length is sent just before it. This increases the burden on the server a little bit (messages have
to be pre-composed, they can'’t just be streamed up after the send initiation) but makes life easier for
the client, which can tell in advance how much storage it will need to allocate to buffer the message
for processing aswhole.

Also, notice each response is tagged with a sequence label supplied by the request; in this example
they have the form A00ON, but the client could have generated any token into that slot. This feature
makes it possible for IMAP commands to be streamed to the server without waiting for the responses;
a state machine in the client can then simply interpret the responses and payloads as they come back.
This technique cuts down datency.

IMAP (which was designed to replace POP3) is an excellent example of a mature and powerful
Internet application protocol design, one well worth studyeandlation.

B9 One relic of this pre-Unix history is the fact that Internet protocols normally use CR-LF as a line
terminator rather than Unix’s baké&.



Application protocol metaformats

Just as data file metaformats have evolved to simplify serialization for storage, application protocol
metaformats have evolved to simplify serialization for transactions across networks. The tradeoffs are
a little different in this case; because network bandwidth is more expensive than storage, there is more
of a premium on transaction economy. Still, the transparency and interoperability benefits of textual
formats are sufficiently strong that most designers have resisted the temptation to optimize for
performance at the cost rdfadability.

The classical Internet applicationmetaprotocol

Marshall Rose’s RFC 331Qn the Design of ApplicatioRrotocol} provides an excellent overview

of the design issues in Internet application protocols. It makes explicit several of the tropes in classical
Internet application protocols that we observed in our examination of SMTP, POP. and IMAP, and
provides an instructive taxonomy of such protocols. It is recommerdedg.

Theclassical Internet metaprotocol is textual. It uses single-line requests and responses, except for
payloads which may be multi-line. Payloads are shipped either with a preceding length in octets or
with a terminator that is the line ".\n". In the latter case the payldagddsstuffedall lines led with a
period get another period prepended, and the receiver side is responsible for both recognizing the
termination and stripping away the stuffing. Response lines consist of a status code followed by a
human-readablmessage.

One final advantage of this classical style is that it is readily extensible. The parsing and state-machine
framework doesn’t need to change much to accomodate new requests, and it is easy to code
implementations so that they can parse unknown requests and return an error or simply ignore them.
SMTP, POPS3, and IMAP have all been extended in minor ways fairly often during their lifetimes, with
minimal interoperability problems. Naively-designed binary protocols are, by contrast, notoriously
brittle.

HTTP as a universal applicationprotocol

Ever since the World Wide Web reached critical mass around 1993, application protocol designers
have shown an increasing tendency to layer their special-purpose protocols on top of HTTP, using
webservers as generic servpatforms.

This is a viable option because, at the transaction layer, HTTP is very simple and general. An HTTP
request is a message in an RFC-822/MIME-fikenat; typically, the headers contain identification

and authentication information, and the body is a method call on some resource specified by a
Universal Resource Indicator (URI). The most important methods are GET (fetch the resource), PUT
(modify the resource) and POST (ship data to a form or back-end process). The maost important form
of URI is a URL or Uniform Resource Locator, which identifies the resource by service type, host
name, and a location on the host. An HTTP response is simply an RFC-822/MIME message and can
contain arbitrary content to be interpreted bydlent.

Webservers handle the transport and request-multiplexing layers of HTTP, as well as standard service
types like "http" and "ftp". It is relatively easy to write webserver plugins that will handle custom
service types, and to dispatch on other elements of théddRat.


ftp://ftp.rfc-editor.org/in-notes/rfc3117.txt

Besides avoiding a lot of lower-level details, this method means the application protocol will tunnel
through the standard HTTP service port and not nde@iRdIP service port of its own. This is a

distinct advantage; most firewalls leave port 80 open, but trying to punch another hole through can be
fraught with both technical and politicdifficulties.

Casestudy: Internet Printing Protocol

Internet Printing Protocol (IPP) is a successful, widely-implemented standard for the control of
network-accessible printers. Pointers to RFCS, implementations, and much other related material are
available at the IETF{Brinter WorkingGroupsite.

IPP uses HTTP 1.1 as a transport layer. All IPP requests are passed via an HTTP POST method call;
responses are ordinary HTTP responses. (Section 4.2 of RFCRG&fale for the Structure of the

Model and Protocol for the Internet PrintilRyotocol does an excellent job of explaining this choice;

it repays study by anyone considering writing a new applicatiotocol.)

From the software side, HTTP 1.1 is widely deployed. It already solves many of the transport-level
problems that would otherwise distract protocol developers and implementors from concentrating on
the domain semantics of printing. It is cleanly extensible, so there is room for IPP to grow. The CGI
model for handling POST requests is well-understood and development tools areswddlelyle.

Most network-aware printers already embed a webserver, because it's the natural way to make the
status of the printer remotely queryable by human beings. Thus, the incremental cost of adding IPP
service to the printer firmware is not large. (This is an argument that could be applied to a remarkably
wide range of other network-aware hardware, including vending machines and coffee Bihlems
hottubs!)

About the only serious drawback of layering IPP over HTTP is that the protocol is completely driven

by client requests. Thus there is no space in the model for printers to ship asynchronous alert messages
back to clients. (However, smarter clients could run a trivial HTTP server to receive such alerts
formatted as HTTP requests from firinter.)

BEEP

BEEP (formerly BXXP) is a generic protocol machine that competes with HTTP for the role of

universal underlayer for application protocols. There is a niche open for this because there is not as yet
any other more established meta-protocol that is appropriate for truly peer-to-peer applications, as
opposed to the client-server applications that HTTP handles well. Thepeoigetwebsitg¢that

provides access to standards and open-source implementations inlsegedes.

BEEP has features to support both client-server and peer-to-peer modes. The authors designed the
BEEP protocol and support library so that picking the right options abstracts away messy issues like
data encoding, flow control, congestion-handling, supporting end-to-end encryption, and assembling a
large response composed of multipensmissions,

Internally, BEEP peers exchange sequences of self-describing binary packets not unlike chunktypes in
PNG.The design is tuned more for economy and lesgdosparencynd than the classical Internet
protocols or HTTP, and might be a better choice when data volumes are large. BEEP also avoids the
HTTP problem that all requests have to be client-initiated; it would be better in situations where a
server needs to send asynchonous status messages baakiemthe


http://www.pwg.org/ipp/
http://www.beepcore.org/beepcore/docs/sl-beep.jsp

BEEP is still new technology in early 2003, and has only one demonstration project. But the principal
designer, Marshall Rose, is one of the most respected and senior figures in the Internet engineering
community. When Dr. Rose describes BEEP as a consolidation of “best practice” in
application-protocol design, the speaker and the claim demandastamigon.

XML-RPC. SOAP, andJabber

There is a developing trend in application protocol design towards using XML WitME to

structure requests and payloads. BEEP peers use this format for channel negotiations. Three major
protocols are going this route: XML-RPC and SOAP for remote procedure calls, and Jabber for instant
messaging and presence. All three are XML docunypes.

XML-RPC is very much in the Unix spirit (its author observes that he learned how to program in the
1970s by reading the original source code for Unix). It's deliberately minimalist but nevertheless quite
powerful, offering a way for the vast majority of RPC applications that can get by on passing around
scalar boolean/integer/float/string datatypes to do their thing in a way that is lightweight and easy to
understand and monitor. XML-RPC'’s type ontology is richer than that of a text stream, but still simple
and portable enough to act as a valuable check on interface complexity. Open-source implementations
are available. An excellepfML-RPC homepagépoints to specifications and multiple open-source
implementations.

SOAP (Simple Object Access Protocol) is a more heavyweight RPC protocol with a richer type
ontology that includes arrays and C-like structs. As of early 2003 the SOAP standard is still a work in
progress, but a trial implementationApacheis tracking the drafts. Open-source client modules in
Perl,Python,andJavaare readily discoverable by a web search. The W3C draft specification is
[available on th&V/ehl

XML-RPC and SOAP, considered as remote procedure call methods, have some associated risks that
we discuss at the end of Chag@€Multiprogramming)

Jabber is a peer-to-peer protocol designed to support instant messaging and presence. What makes it
interesting as an application protocol is that it supports passing around XML forms and live
documents. Specifications, documentation, and open-source implementations are available at the
[Jabber SoftwarEBoundatiofsite.

B9 sedqRFC2324andRFC232



http://www.xmlrpc.com/
http://www.w3.org/TR/SOAP/
http://www.jabber.org/about/overview.html?PHPSESSID=3cf018cf5aafbb72fbc5afebd2690f44
http://www.ietf.org/rfc/rfc2324.txt
http://www.ietf.org/rfc/rfc2325.txt

Binary files ascaches

There is one compromise between the economy of binary formats and the other virtues of textual ones
that is available only for data files, and not protocols. That is, to use a binary file as a cache for an
associated text file. The Solaris and AIX variants of Unix use this technique for their password
information.

To make this work, all code that looks at the binary cache has to know that it should check the
timestamps on both files and regenerate the cache if the text master is newer. Alternatively, all changes
to the textual master must be made through a wrapper that will update the binary format: the
administrative "vipw" command provides this for the passviited

While this approach can be made to work, it has all the disadvantages that the DRY rule would lead us
to expect. The duplication of data means that it doesn't yield any economy of storage — it's purely a
speedoptimization.But the real problem with it is that that the code to ensure coherency between

cache and master is notoriously leaky bogd-prone.

Coherency can be guaranteed in simple cases. One such is theiRgiwater which compiles and
deposits on disk a p-code file with extension .pyc every time the corresponding .py source file
changes; the p-code is actually what is interpreted when the program runs. Emacs Lisp uses a similar
technique with .el and .efies.

When the update pattern of the master is more complex, however, there is a tendency for the
synchronization code to spring leaks. AIX is infamous for spawning system-administrator horror
stories that reflect this. In general this is a brittle technique and probabbvbéestd.



Chapter 6. Multiprogramming
As Simple As Possible, But No Simpler
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Theories should be made as simple as possible, itmmer.
--Albert Einstein

The most characteristic program-modularization technique of Unix is splitting large programs into
multiple cooperating processes. This has usually called ‘multiprocessing’ in the Unix world, but win
this book we revive the older term ‘multiprogramming’ in order to avoid confusion with
multiprocessor hardwaimplementations.

Multiprogramming is a particularly murky area of design, one in which there are few guidelines to
good practice. Many programmers with excellent judgement about how to break up code into
subroutines nevertheless wind up writing whole applications as monster single-process monoliths that
founder on their own internabmplexity.



The Unix style of design applies the do-one-thing-well approach at the level of cooperating programs
as well as cooperating routines within a program, emphasizing small programs connected by
well-defined inter-process communication or by shared files. Accordingly, the Unix operating system
encourages us to break our programs into simpler sub-processes, and to concentrate on the interfaces
between these sub-processes. It does this in at least three fundavagstal

® By making process-spawnimfpeap.

e By providing methods (shellouts, I/O redirection, pipes, message-passing, and sockets) that make
it relatively easy for processesdcommunicate.

® By encouraging the use of simple, transparent, textuafalaatsand that can be passed
through pipes andockets.

Inexpensive process-spawning is a critical enabler for the Unix style of programming. On an operating
system such as VAX VMS, where starting processes is expensive and slow and requires special
privileges, one must build monster monoliths because one has no choice. Fortunately the trend in the
Unix family has been towards lower fork(2) overhead rather than higher, in particular, is

famously efficient this way, with a process-spawn faster than thread-spawning on many other
operatingsystems.

Historically, many Unix programmers have been encouraged to think in terms of multiple cooperating
processes by experience with shell programming. Shell makes it relatively easy to set up groups of
multiple processes connectedfipes,running either in background or foreground or a mix of the

two.

Besides respecting the Rule of Modularity, another important reason for breaking up programs into
cooperating processes is for better security. Under Unix, programs which must have write access to
security-critical system resources even though they are run by ordinary users get that access through a
feature called theetuidbit. Executable files are the smallest unit of code that can hold a setuid bit;

thus, every line of code in a setuid executable must be trusted. (Well-written setuid programs,

however, take all necessary privileged actions first and then drop their privileges back to user level for
the remainder of the&xistence.)

Usually a setuid program only needs its privileges for one or a small handful of operations. It is often
possible to break up such program into cooperating processes, a smaller one that needs setuid and a
larger one that does not. When we can do this, only the code in the smaller program has to be trusted.
It is because this kind of partitioning and delegation is possible that Unix has a better security track
recordEy than itscompetitors.

In the remainder of this chapter, we’ll look at the implications of cheap process-spawning and discuss
how and when to apply pipes, sockets, and other inter-process communication (IPC) methods to
partition your design into cooperating processes. (In the next chapter, we’ll apply the same
separation-of-functions philosophy to interfatsign.)

While the benefit of breaking programs up into cooperating processes is a reduction in global
complexity, the cost is that we have to pay more attention to the design of the protocols which are used
to pass information and commands between processes. (In software systems of all kinds, bugs collect
atinterfaces.)



In Chapte[s (Textuality]we looked at the lower level of this design problem — how to lay out
application protocols that are transparent, flexible and extensible. But there is a second, higher level to
the problem which (aside from some advice to avoid round trips) we blithely ignored. That is the
problem of designing state machines for each side afdimmunication.

It is not hard to apply good style to the syntax of application protocols, given models like SMTP or
BEEP or XML-RPC. The real challenge is not protocol syntax but prolmgicl— designing a

protocol that is both sufficiently expressive and deadlock-free. Almost as importantly, the protocol has
to beseento be expressive and deadlock-free; human beings attempting to model the behavior of the
communicating programs in their heads and verify its correctness must be ab#sto do

In our discussion, therefore, we will focus on the kinds of protocol logic one naturally uses with each
kind of inter-processommunication.

B That is, a better record measured in security breaches per total machine-hours of Internet
exposure.



Separating complexity control from performance tuning

First, though, we need to dispose of a few red herrings. Our discussmgang to be about using
concurrency to improve performance. Putting that concern before developing a clean architecture that
minimizes global complexity is prematusptimization,the root of allevil.

A closely related red herring is threads (that is, multiple processes sharing the same memory-address
space). Threading is a performance hack. In order to avoid a long diversion here, we’ll examine
threads in more detail at the end of this chapter; the summary is that they do not reduce global
complexity but ratheincreaseit, and should therefore lasvoided.



Handing off tasks to specialisprograms

In the simplest form of inter-program cooperation enabled by inexpensive process spawning, a
program runs another to accomplish a specialized task. Because the called program is often specified
as a Unix shell command through the system(3) call, this is often shkdlcthgout to the called

program. The called program takes over the user’s keyboard and display and runs to completion.
When it exits, the calling program reconnects itself to the keyboard and display and resumes
execution?

Because the calling program does not communicate with the called program during the callee’s
execution, protocol design is not an issue in this kind of cooperation — except in the trivial sense that
the caller may pass command-line arguments to the callee to chabefeatsor.

The classic Unix case of shelling out is calling an editor from within a mail or news program. In the
Unix tradition one doesot bolt purpose-built editors into programs that require general text-edited
input. Instead, one allows the user to specify an editor of his or her choice to be called when editing
needs to beone.

The specialist program usually communicates with its parent via the filesystem, by reading or
modifying file(s) with specified location(s); this is how editor or mailer shellooik.

In a slight variant of this patttern, the specialist program may accept input on its standard input, and be
called with theC library entry point popen(..., "w") or as part of a shellscript. Or it may send output to

its standard output, and be called with popen(..., "r") or as part of a shellscript. This case is not usually
referred to as a shellout; there is no standard jargon for it, but it might well be chltdidicen’.

They key point about all these cases is that the specialist programs don’'t handshake with the parent
while they are running. They have an associated protocol only in the trivial sense that whichever
program (master or slave) is accepting input from the other has to be able it parse

Casestudy: the mutt mail useragent.

Themutt mail user agent is the modern representative of the most important design tradition in Unix
email programs. It has a simple screen-oriented interface with single-keystroke commands for
browsing and readingail.

When you usenuttas a mail composer (either by calling it with an address as a command-line
argument or by using one of the reply commands), it examines the process environment variable
EDITOR and then generates a temporary file name. The value BEXH€OR variable is called as a
command with the tempfile name as argument. When that command terminates, mutt resumes on the
assumption that the temporary file contains the desiredtexail

Almost all Unix mail- and netnews-composition programs observe the same convention. Because they
do, composer implementors don’t need to write a hundred inevitably diverging editors, and users don't
need to learn a hundred divergent interfaces. Instead, users can carry their chosen edit@ms with

An important variant of this strategy shells out to a small program that passes the specialist job to an
already-running instance of a big program, like an editor or a web browser. Thus, developers who
normally have an instance of Emacs running on their X display can set EDITOR=emacsclient, and
have a buffer pop open in their Emacs when they request editing in mutt. The point of this is not really
to save memory or other resources, it's to enable the user to unify all his editing in a single Emacs



process (so that, for example, cut and paste among buffers can carry along internal Emacs state
information like fonthighlighting).

B4 A common error in programming shellouts is to forget to block signals in the parent while the
subprocess runs. Without this precaution, an interrupt typed to the subprocess can have unwanted
side-effects on the paremtocess.



Pipes,redirection, and filters

After KenThompsomand Dennifitchie,the most important formative figure of early Unix was
probably DougMicliroy. His invention of theipe construct reverberated through the design of Unix,
encouraging its nascent do-one-thing-well philosophy and inspiring most of the later forms of IPC in
the Unix design (in particular, the socket abstraction useakefwvorking).

Pipes depend on the convention that every program has initially available to it (at least) two I/O data
streams; standard input and standard output (numeric file descriptors 0 and 1 respectively). Many
programs can be written &ikers, which read sequentially from standard input and write only to
standardbutput.

Normally these streams are connected to the user’s keyboard and display, respectively. But Unix shells
universally suppontedirectionoperations which connect these standard input and output streams to
files. Thustyping

Is >foo

sends the output of the directory lister Is(1) to a file named ‘foo’. On the othertiying,

wc <foo

causes the word-count utility wc(1) to take its standard input from the file ‘foo’, and deliver a
character/word/line count to standanatput.

The pipe operation connects the standard output of one program to the standard input of another. A
chain of programs connected in this way is callgipaline If we write

Is | we

we’ll see a character/word/line count for the current directory listing (only the line count is really
likely to beuseful).

It's important to note that all the stages in a pipeline run concurrently. Each stage waits for input on
the output of the previous one, but no stage has to exit before the next can run. This property will be
important later on when we look at interactive uses of pipelines, like sending the lengthy output of a
command tanore(1).

The major weakness of pipes is that they are unidirectional. It's not possible for a pipeline component
to pass control information back up the pipe other than by terminating. Accordingly, the protocol for
passing data is simply the receiver’s infartmat.

So far, we have discussed anonymous pipes created by the shell. There is a variamaaléxpipe
which is a special kind of file. If two programs open the file, one for reading and the other for writing,
it acts like a pipe-fitting between them. Named pipes are a bit of a historical relic; they have been
largely displaced from use by namsmtketswhich we’ll discuss below. (For more on the history of
this relic, see the discussion of [A€&T messageprimitivegbelow.)




Casestudy: Piping to aPager

Pipelines have many uses. For one example, Unix’s directory lister Is(1) lists files in a directory to
standard output without caring that a long listing might scroll off the top of the user’s display too
quickly for the user to see it. But Unix has another program, more(1), which displays its standard input
in page-sized chunks, prompting for a user keystroke after displaying&aemful.

Thus, if the user typds | more, piping the output of Is(1) to the input of more(1), successive
page-sized pieces of the list of filenames will be displayed afterkegskroke.

The ability to combine programs like this can be extremely useful. But the real win here is not cute
combinations; it's that because both pipes and more(1) ettigt; programs can bempler. Pipes

mean that programs like Is(1) (and other programs that write to standard out) don't have to grow their
own pagers — and we're saved from a world of a thousand built-in pagers (each with its own look &
feel, naturally). Code bloat is avoided and global complerityiced.

As a bonus, if anyone needs to customize pager behavior, it can be doeelece, by changingne
program. Indeed, multiple pagers can exist, and will all be useful with every application that writes to
standarcutput.

In fact, this has actually happened. On modern Unixes, more(1) has been largely replaced by less(1),
which adds the capability to scroll back in the displayed file rather than just fof#arBecause

less(1) is decoupled from the programs that use it, it's possible to simply alias ‘less’ to ‘more’ in your
shell and get all the benefits of a better pager witpratjrams.

Casestudy: making word lists

A more interesting example is one in which pipelined programs cooperate to do some kind of data
transformation for which, in less flexible environments, one would have to write castien

Consider thepipeline

tr ™" "\n" | sort | uniq

The first command translates spaces on standard input to newlines on standard output (\012). The
second sorts lines on standard input and writes the sorted data to standard output. The third takes spans
of identical lines on standard input and discards all but one copy. Together, these generate a sorted
wordlist to standard output from text on standapit.

Casestudy: pic2graph

Shell source code for the program pic2graph(1) ships with the groff suite of text-formatting tools from
the Free Software Foundation. It translates diagrams written in the PIC language tdrhagegp

The pic2graph(1) implementation illustrates how much one pipeline can do purely by calling
pre-existing tools. It starts by massaging its input into an appropriate form, continues by feeding it
through groff(1) to produce Postscript, and finishes by converting the Postscript to a bitmap. All these
details are hidden from the user, who simply sees PIC source go in one end and a bitmap ready for
inclusion in a web page come out titeer£y .



This is an interesting example because it illustratesgipasand filtering can adapt programs to
unexpected uses. The program that interprets PIC, pic(1), was originally designed only to be used for
embedding diagrams in typeset documents. Most of the other programs in the toolchain it was part of
are now semi-obsolescent. But PIC, which is handy for new uses embedded in HTML, gets a renewed
lease on life because pic2graph(1) can bundle together all the machinery needed to convert the output
of pic(1) into a more modeifiormat.

We'll examine pic(1) more closely, as a minilanguage design, in Cligafiénilanguagesg)

Casestudy: bc(1) anddc(1)

Part of the classic Unix toolkit dating back to Version 7 is a pair of calculator programs. The dc(1)
program is a simple calculator that accepts text lines consisting of reverse-Polish notation on standard
input and emits calculated answers to standard output. The bc(1) program accepts a more elaborate
infix syntax resembling conventional mathematical notation; it includes as well the ability to set and
read variables and define functions for elabofateulas.

While the modern GNU implementation of bc(1) is standalone, the classic version shelled out to dc(1).
In this division of labor, bc(1) does variable substitution and function expansion and translates infix
notation into reverse-Polish — but doesn’t actually do calculation itself, instead passing RPN
translations of input expressions to dc(1)dwaluation.

There are clear advantages to this separation of function. It means that users get to choose their
preferred notation, but the logic for arbitrary-precision numeric calculation (which is moderately
tricky) does not have to be duplicated. Each of the pair of programs can be less complex than one
calculator with a choice of notations would be. The two components can be debugged and mentally
modeled independently of eacther.

In Chapte[8 (Minilanguageg)ve will re-examine these programs from a slightly different example, as
examples of domain-specifininilanguages.

B The less(1) man page explains the name by observing “Lessés”

P4 A few months after writing pic2graph, the author learned of the pic2plot(1) utility distributed with
the GNU plotutils package. This tool can compile PIC to bitmaps without going thgooffl).



Slaveprocesses

Occasionally, child programs both accept data from and return data to their callers gipesgh

Unlike simple shellouts, both master and slave processes need to have internal state machines to
handle a protocol between them without deadlocking or racing. This is a drastically more complex and
more difficult-to-debug organization than a simgkellout.

Unix’s popen(3) call can set up either an input pipe or an output pipe for a shellout, but not both for a
slave process — this seems intended to encourage simpler programming. And, in fact, interactive
master-slave communication is tricky enough that it is normally only used when either (a) the implied
protocol is either dead trivial, or (b) the slave process has been designed to speak an application
protocol along the lines we discussed in Chdp@extuality] We'll return to this issue, and ways to
cope with it, in Chapté8 (Minilanguages)

Casestudy: scp(1) andssh

One common case where the implied protocol really is trivial is progress meters. The scp(1)
secure-copy command calls ssh(1) as a slave process, intercepting enough information from ssh’s
standard output to reformat the reports as an ASCII animation of a progrelg§ bar.

B The friend who suggested this case study comments: “Yes, you can get away with this
technique...if there are just a few easily-recognizable nuggets of information coming back from the
slave process, and you have tongs and a radistioh



Wrappers

The opposite of a shellout isnaapper. A wrapper either creates a new interface for or specializes a
called program. Often, wrappers are used to hide the details of elaboraepstieies.We'll discuss
interface wrappers in chapfet (Usernterfaceq) Most specialization wrappers are quite simple, but
nevertheless vemyseful.

As with shellouts, there is no associated protocol because the programs do not communicate during the
execution of the callee; but the wrapper usually exists to specify arguments that modify the callee’s
behavior.

Casestudy: backup scripts

Specialization wrappers are a classic use of the Unix shell and other sdaptinggesOne kind of
specialization wrapper that is both common and representative is a backup script. It may be a one-liner
as simple athis:

tar -czvf /dev/st0 $*

a wrapper for the tar(1) tape archiver utility which simply supplies one fixed argument (the tape device
/dev/st0) and passes to tar all the other arguments supplied by tii®*user



Security wrappers and Bernsteinchaining

One very common use of wrapper scripts isesuritywrappers A security script may call a
gatekeeper program to check some sort of credential, then conditionally execute another based on the
status value returned by thatekeeper.

Bernstein chaining is a specialized security-wrapper technique invented by Daniel J. Bernstein, who
has used it in a number of his packages. Conceptually, a Bernstein chain {@ipi&kne,but each
successive stage replaces the previous one rather than running concurreritly with

The usual application is to confine security-privileged applications to some sort of gatekeeper

program, which can then hand state to a less privileged one. The technique pastes several programs
together using execs, or possibly a combination of execs and forks. The programs are all named on one
command line. Each program performs some function and (if successful) runs exec(2) on the rest of its
commandine.

Bernstein’s rblsmtpd package is a prototypical example. It serves to look up a host in the anti-spam
DNS zone of the Mail Abuse Prevention System. It does this by doing a DNS query on the IP address
passed into it in the CPREMOTEIRNvironment variable. If the query is successful, then rblsmtpd

runs its own SMTP that discards the mail. Otherwise the remaining command-line arguments are
presumed to constitute a mail transport agent that knows the SMTP protocol, and handed to exec(2) to
berun.

Another example may be found in Bernstein’s gmail package. It contains a program called
condredirect. The first parameter is an email address, and the remainder a program and arguments.
Condredirect forks and execs those parameters, to run the program. If it exits successfully, the email
pending on stdin is forwarded to the email address. In this case, opposite to that of rblsmtpd, the
security decision is made by the child; this case is a bit more like a clatstalt.

A more elaborate example is the gmail POP3 server. It consists of three programs, gmail-popup,
checkpassword and gmail-pop3d. Checkpassword comes from a separate package cleverly called
checkpassword, and unsurprisingly it checks the password. The POP3 protocol has an authentication
phase and mailbox phase. Once you enter the mailbox phase you cannot go back to the authentication
phase. This is a perfect application for Bernstdiaining.

The first parameter of gmail-popup is the hostname to use in the POP3 prompts. The rest of its
parameters are forked and execed, after the POP3 username and password have been fetched. If the
program returns failure, the password must be wrong, so gmail-popup reports that and waits for a
different password. Otherwise, the program is presumed to have finished the POP3 conversation, so
gmail-popupexits.

The program named on gmail-popup’s command line is expected to read three null-terminated strings
from file descriptor 329 . These are the username, password, and response to a cryptographic
challenge, if any. This time it's checkpassword which accepts as parameters the name of gmail-pop3d
and its parameters. The checkpassword program exits with failure if the password does not match;
otherwise it changes to the user’s uid, gid, and home directory, and executes the rest of its command
line on behalf of thatiser.

Bernstein chaining is useful for situations in which the application needs setuid or setgid privileges to
initialize a connection, or acquire some credential, and then drop those privileges so that following
code does not have to be trusted. Following the exec, the child program cannot setreuid back to root.



It's also more flexible than a single process, because you can modify the behavior of the system by
inserting another program into thieain.

For example, rblsmtpd (mentioned above) can be inserted into a Bernstein chain, inbetween tcpserver
(from the ucspi-tcp package) and the real SMTP server, typically gmail-smtpd. However, it works with
inetd(8) andsendmail-bs aswell.

As another example, Russ Nelson has written a gmail-popbull package. Without any modifications to
gmail’'s POP3 server, gmail-popbull will insert a bulletin into the user’'s mailbox. It gets inserted into
the Bernstein chain afteheckpassword.

B9 gmail-popup’s standard input and standard output are the socket, and standard error (which will be
file descriptor 2) goes to a log file. File descriptor 3 is guaranteed to be the next to be allocated. As
Ken Thompsoronce said: “You are not expected to understhisd’



Peer-to-peerinter-processcommunication

All the communication methods we’ve discussed so far have a sort of implicit hierarchy about them,
with one program effectively controlling or driving another and zero or limited feedback passing in the
opposite direction. In communications and networking we frequently need channels that are
peer-to-peerusually (but not necessarily) with data flowing freely in both directions. We'll survey
peer-to-peer communications methods under Unix here, and develop some case studies in later
chapters.

Signals

The simplest and crudest way for two processes on the same machine to communicate with each other
is for one to send the othes@nal Unix signals are a form of soft interrupt; each one has a default

effect on the receiving process (usually to Kill it). A process can deckigea handlerwhich

overrides the default for the signal; the handler is a function which is executed asynchronously when
the signal igeceived.

Signals were originally designed into Unix as a way for the operating system to notify programs of
certain errors and critical events, not as an IPC facility. The SIGHUP signal, for example, is sent to
every program started from a given terminal session when that session is terminated. The SIGINT
signal is sent to whatever process is currently attached to the keyboard when the user enters the
currently-defined interrupt character (often control-C). Nevertheless, signals can be useful for some
IPC situations (and the POSIX-standard signal set includes two signals, SIGUSR1 and SIGUSRZ2,
intended for thisise).They are often employed as a control channalld@mongprograms that run
constantly, invisibly, in background), a way for an operator or another program to tell a daemon that it
needs to either re-initialize itself, wake up to do work, or write internal-state/debugging information to
a knownlocation.

A technique often used with signal IPC is the so-calidfile. Programs that will need to be signalled
will write a small file to a known location (often in the invoking user's home directory) containing
their process ID or PID. Other programs can read that file to discover that PID. The pidfile may also
function as a implicitockfile in cases where no more than one instance of the daemon should be
running simultaneously. System daemons conventionally write their pidfilearfoun

There are actually two different flavors of signals. In the older implementations (notably V7, System
lll, and early Systerd), the handler for a given signal is reset to the default for that signal whenever
the handler fires. The results of sending two of the same signal in quick succession are therefore
usually to kill the process, no matter what handler seds

The BSD 4.xversions of Unix changed this semantics to “reliable” signals, which do not reset unless
the user explicitly requests it. They also introduced primitives to block or temporarily suspend
processing of a given set of signals. Modern Unixes support both styles. You should use the BSD-style
non-resetting entry points for new code, but program defensively in case your code is ever ported to an
implementation that does not suppibrem.

The modern signals API is portable across all recenixversions put not to Windows or classic
(pre-OS X)MacOS.



Systemdaemons and conventionasignals

Many well-known system daemons accept SIGHUP as a signal to re-initialize (that is, reload their
configuration files); examples includgacheand the Linux implementations of bootpd(8), gated(8),
inetd(8), mountd(8), named(8), nfsd(8) and ypbind(8). In a few cases, SIGHUP is accepted in its
original sense of a session-shutdown signal (notably in Linux pppd(8)), but that role nowadays
generally goes t8IGTERM.

SIGTERM is often accepted as a graceful-shutdown signal (this is as distinct from SIGKILL, which
does an immediate process Kill and cannot be blocked or handled). SIGTERM actions often involve
cleaning up temp files, flushing final updates out to databases, alikkthe

When writing daemons, follow the Rule of Least Surprise: use these conventions, and read the manual
pages to look for existingnodels.

Casestudy: fetchmail’s use ofsignals

The fetchmail utility is normally set up to run as a daemon in background, periodically collecting mail
from all remote sites defined in its run-control file and passing the mail to the local SMTP listener on
port 25 without user intervention. Fetchmail sleeps for a user-defined interval (defaulting to 15
minutes) between collection attempts, so as to avoid constantly loadimgtivaek.

When you invokdetchmail with no arguments, it checks to see if you have a fetchmail daemon
already running (it does this by looking for a pidfile). If no daemon is running, fetchmail starts up
normally using whatever control information has been specified in its run-control file. If a daemon is
running, on the other hand, the new fetchmail instance just signals the old one to wake up and collect
mail immediately; then the new instance terminates. In addfgtchmail -q sends a termination

signal to any running fetchmalbemon.

Thus, typingfetchmail commands, in effect, “poll now and leave a daemon running to poll later; don’t
bother me with the detail of whether a daemon was already running or not.” Observe that the detail of
which particular signals are used for wakeup and termination is something the user doesn’t have to
know.

Temp files

The use of temp files as communications drops between cooperating programs is the oldest IPC
technique there is. Despite drawbacks, it’s still useful in shellscripts, and in one-off programs where a
more elaborate and coordinated method of communication wowldeokill.

The most obvious problem with using tempfiles as an IPC technique is that it tends to leave garbage
lying around if processing is interrupted before the tempfile can be deleted. A less obvious risk is that
of collisions between multiple instances of a program using the same name for a tempfile. This is why
it is conventional for shellscripts that make tempfiles to include $3$ in their names; this shell escape
seqguence expands to the process-ID of the caller and effectively uniquifies the filename (it’s also
supported irPerl).

Finally, if an attacker knows the location to which a tempfile will be written, it can step on that name
and possibly either read the producer’s data or spoof the consumer process by inserting modified or
spurious data into the fil€] This is a security risk. If the processes involved have root privileges, it
is a very seriousne.



All these problems aside, tempfiles still have a niche because they're easy, they're flexible, and they're
less vulnerable to deadlocks or race conditiBffsthan more elaborateethods.

And sometimes, nothing else will do. The calling conventions of your child process may require that it
be handed a file to operate on. Our first example of a shellout to an editor demonstrptrtetttly.

Shared memory viammap

If your communicating processes can get access to the same physical memory, shared memory will be
the fastest way to pass information between them. This may be disguised under different APls, but on
modern Unixes the implementation normally depends on the use of mmap(2) to map files into memory
that can be shared between proceg2@$I1X defines a shm_open(3) facility with an API that supports

this.

Because access to shared memory is not automatically serialized by a discipline resembling read and
write calls, programs doing the sharing have to handle contention and deadlock issues themselves,
typically by using semaphore variables located in the shared segment. The issues here resemble those
in multithreading (see the end of this chapter for discussion), but are more manageable because they're
better contained (the defaultristto sharanemory).

On systems where it is available and reliable Apachewebserver's scoreboard facility uses shared
memory for communication between an Apache master process and the pool of Apache images that it
manages to handnnections.

Modern X implementations use shared memory to pass large images between client and server when
they are resident on the same machine, in order to avoid the overhead otspukenication.

The mmap(2) call is supported under all modern Unixes, includmgandthe open-source BSD
versionsithey are described in the Single Unix Specification. It will not normally be available under
Windows, MacOS classic, and other operatipgtems.

Sockets

Where shared memory requires producers and consumers to be co-resident on the same hardware, two
processes using sockets to communicate have separate address spaces; they may live on different
machines and, in fact, be separated by an Internet connection spanning dlali¢he

Socketswere developed in thHRSD lineage of Unix as a way to encapsulate access to data networks.
Two programs communicating over a socket typically see a bidirectional byte stream (there are other
socket modes and transmission methods, but they are of only minor importance). The byte stream is
both sequenced (that is, even single bytes will be received in the same order sent) and reliable (socket
users are guaranteed that the underlying network will do error detection and retry to ensure delivery).
Socket descriptors, once obtained, behave essentially lilkaegiptors.

At the time a socket is created, you specifyr@ocolfamily which tells the network layer how the

name of the socket is interpreted. Sockets are usually thought of in connection with the Internet, as a
way of passing data between programs running on different hosts; this is the AF_INET socket family,

in which addresses are interpreted as host-address and service-number pairs. However, the AF_UNIX
protocol family supports the same socket abstraction for communication between two processes on the
same machine (names are interpreted as the locations of special files analogous to bidirectional named
pipes). As an example, client programs and servers using the X waydtemtypically use



AF_UNIX sockets taommunicate.

All modern Unixes support BSD-sty#mckets, and as a matter of design they are usually the right

thing to use for bidirectional IPC no matter where your cooperating processes are located.
Performance pressure may push you to use shared memory or tempfiles or other techniques that make
stronger locality assumptions, but under modern conditions it is best to assume that you code will need
to be scaled up to distributed operation. More importantly, those locality assumptions may mean that
portions of your system get chummier with each others’ internals than ought to be the case in a good
design. The separation of address spaces that sockets enforce is a featimeg.not a

To use sockets gracefully, in the Unix tradition, start by designirggpplicationprotocolfor use
between them — a set of requests and responses which expresses the semantics of what your programs
will be communicating about in a succinct way. We've already discussed the design of application

protocols in Chaptés (Textualit

Sockets are supported in all recent Unixes, under Windows, and under classic Ma&llS as

ObsolescentJnix IPC methods

Unix (born 1969) long predatd<CP/IP(born 1980) and the ubiquitous networking of the 1990s and
later. Anonymous pipes, redirection, and shellout have been in Unix since very early days, but the
history of Unix is littered with the corpses of APIs tied to obsolescent IPC and networking models,
beginning with the mx() facility that appeared in Version 6 (1976) and was dropped before Version 7
(1979).

Eventually BSDsocketsvon out as IPC was unified with networking. But this didn’t happen until

after fifteen years of experimentation that left a number of relics behind. It's useful to know about
these because there are likely to be references to them in your Unix dcumentation that might give the
misleading impression that they’re still in use. These obsolete methods are described in more detail in

Unix NetworkProgramming Stevens9Q]
‘Indian Hill' shared memory

After Version 7 and the split between 8D and SystenV lineages, the evolution of Unix
inter-process communication took two different directions. The BSD directionfetkets The

AT&T line, on the other hand, developed named pipepr@gouslydiscussedand an IPC facility,
specifically designed for passing binary data and based on shared-memory bidirectional message
queues. This is called called ‘System V IPC’ — or, among old timers, ‘Indian Hill' IPC after the
AT&T facility where it was firstwritten.

Programs which cooperate using System V IPC usually define shared protocols based on exchanging
short (up to 8K) binary messages. The relevant manual pages are shmget(2) and friends. As this style
has been largely superseded by either mmap(2)-based shared memory or text protocols passed between
sockets, we shall not give an examipéze.

The Indian Hill facilities are present linuxandother modern Unixes. However, as they are a legacy
feature, they are not exercised very often. The Linux version is still known to have bugs as of early
2003.



Streams

Streams networking was invented for Unix Version 8 (1985) by Déitahie,and first became

available in the 3.0 release of System V Uf1i886).The streams facility provided a full-duplex

interface (functionally not unlike a BS&bcket,and like sockets accessible through normal read(2)

and write(2) operations after initial setup) between a user process and a specified device driver in the
kernel. The device driver might be hardware such as a serial or network card, or it might be a
software-only pseudo-device set up to pass data betweeprosesses.

An interesting feature of streams is that it is possible to push protocol-translation modules into the
kernel’s processing path, so that the device the user process ‘sees’ through the full-duplex channel is
actually filtered. This could be used, for example, to implement a line-editing protocol for a terminal
device, Or one can implement protocols such as IP or TCP without wiring them directly into the
kernel.

Streams didn't take over the world becali€®/IPdid. Streams began as a research exercise
apparently stimulated by the now-dead OSI 7-layer networking model; as TCP/IP drove out other
protocol stacks and migrated into Unix kernels, the extra flexibility provided by streams had less and
less utility. In 2003, System Mnix still supports streams, as do some Syst#RED hybrids such as
Digital Unix andSolaris.

Linux and other open-source Unixes have effectively discarded streams. Linux kernel modules and
libraries are available from tfigS] project, but (as of early 2003) are not integrated into the stock
Linux kernel and have significant known bugs. They will not be supported under non-Unix operating
systems.

Bj A particularly nasty variant of this attack is to drop a named Unix-domain socket where the
producer and consumer programs are expecting the templfiée to

BY For the non-programmers in the audience, a ‘race condition’ is a class of problem in which correct
behavior of the system relies on two independent events happening in the right order, but there is no
mechanism for ensuring that they actually will. Race conditions produce intermittent,
timing-dependent problems that can be devilishly difficuti¢bug.


http://www.gcom.com/home/linux/lis/

Client-Server Partitioning for Complexity Control

Often, an effective way to hold down complexity is to break an application into a client/server pair
communicating via an application protocol. This kind of partitioning is particularly effective in

situations where multiple instances of the application must manage access to a resource that is shared
among all instances of tlagplication.

This kind of partitioning can help distribute cycle-hungry applications across multiple hosts, and/or
make them suitable for distributed computing acroséniieenet.

We'll discuss the relate@LI serverpattern in Chaptgtl (Usernterfaces)

Casestudy: PostgreSQL

PostgreSQL is an open-source database program. Had it been implemented as a monster monolith, it
would be a single program with an interactive interface, that manipulates database files on disk
directly. Interface would be welded together with implementation, and two instances of the program
attempting to manipulate the same database at the same time would have serious contention and
lockingissues.

Instead, the PostgreSQL suite includes a server called postmaster and at least three client applications.
One postmaster server process per machine runs in background and has exclusive access to the
database files. It accepts requests in the SQL query languab€RilP connections. When the user

runs a PostgreSQL client, that client opens a session to postmaster and does SQL transactions with it.
The server can handle several client sessions at once, and sequences requests so that they don’t step on
eachother.

Because the front end and back end are separate, the server doesn’'t need to know anything except how
to interpret SQL requests from a client and send SQL reports back to it. The clients, on the other hand,
don’t need to know anything about how the database is stored. Clients can be specialized for different
needs and have different usaterfaces.

This organization is very typical for Unix databases — so much so that it is often possible to mix and
match SQL clients and SQL servers. The interoperability issues are the SQL seDRiRBport
number, and whether client and server support the same diafsQLof

Casestudy: Freeciv

Freeciv is an open-source strategy game inspired by Sid Meier’s cagization|l. In it, each

player begins with a wandering band of neolithic nomads and builds a civilization. Player civilizations
may explore and colonize the world, fight wars, engage in trade, and research technological advances.
Some players may actually be artificial intelligences; solitaire play against these can be challenging.
One wins either by conquering the world or by being the first player to reach a technology level

sufficient to get a starship to Alpha Centauri. Sources and documentation are availaljbeca



http://www.freeciv.org/
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The state of a running Freeciv game is maintained by a server process, the game engine. Players run
GUI clients which exchange information and commands with the server via a packet protocol. All
game logic is handled in the server. The details of GUI are handled in the client; different clients
support differerent interfacgyles.

This is a very typical organization for a multi-player online game. The packet protocdlGCRAR as

a transport, so one server can handle clients running on different Internet hosts. Other games that are
more like real-time simulations (notably first-person shooters)i¥e and trade lower latency for

some uncertainty about whether any given packet will be delivered. In such games, users tend to be
issuing control actions continuously, so sporadic dropouts are tolerable, bufakady is



Two traps to avoid

Some of the IPC methods we’ve discussed in this chapter are historical fossils. While BSD-style
socketsoverTCP/IPare have become something like a universal IPC method, there are still live
controversies over the right way to partition by multiprogramming. We’'ll take a brief look at two that
have been imported to the Unix world but — for good reasons — don'’t fldueigh

Remoteprocedurecalls

Despite exceptions such as NFS and the GNOME project, attempts to import CORBA, ASN.1, and
other forms of remote-procedure-call interface have largely failed — these technologies have not been
naturalized into the Unigulture.

There seem to be several underlying reasons for this. One is that RPC interfaces are not readily
discoverablethat is, it is difficult to query these interfaces for their capabilities, and difficult to
monitor them in action without building one-off tools as complex as the programs being monitored
(we’ll develop this concept further in Chag@fTransparency) They have the same version skew
problems as libraries, but those problems are harder to track because they’re distributed and not
generally obvious at linkme.

The usual argument for RPC is that it permits “richer” interfaces than methods like text streams — that
is, interfaces with a more elaborate and application-specific ontology of data types. But the Rule of
Simplicity applies! Interfaces that are rich in this way also tend to be brittle. If the type ontologies of

the programs on each side don’t exactly match, it can be very hard to teach them to communicate at all
— and fiendishly difficult to resolvbugs.

With classical RPC, it's too easy to do things in a complicated and obscure way instead of keeping
them simple. RPC seems to encourage the production of large, baroque, over-engineered systems with
obfuscated interfaces, high global complexity, and serious version-skew and reliability problems — a
perfect example of thick glue layers ramuck.

Windows DCOM and COM+ are perhaps the archetypal examples of how bad this can get, but there
are plenty of others. Apple abandoned OpenDoc, and both CORBA and the once wildly hyped Java
RMI have receded from view as people have gained field experience with them. This may well be
because these methods don't actually solve more problems tharatsey

Andrew S. Tanenbaum and R. van Renesse have given us a detailed analysis of the general problem in
A Critique of the Remote Procedure CR#lradign|Tanenbaum&vanRenes$e] paper which should
serve as a strong cautionary note to anyone considering an architecture HaB€H on

All these problems may indicate long-term difficulties for the relatively few Unix projects that use
RPC. Of these, perhaps the best known is the GNOME desktop project. They contribute to the
notorious security vulnerabilities of exposing NFS servers.

Unix tradition, on the other hand, strongly favosensparenanddiscoverableinterface3his is one of

the forces behind the Unix culture’s continuing attachment to IPC via textual protocols. It is often
argued that the parsing overhead of textual protocols is a performance problem relative to binary RPCs
— but RPC interfaces tend to have latency problems that are far worse, because (a) you can'’t readily
anticipate how much data marshalling and unmarshalling a given call will involve, and (b) the RPC
model tends to encourage programmers to treat network transactions as cost-free. Adding even one
additional round trip to a transaction interface tends to add network latency that swamps any overhead



from parsing omarshalling.

Even if text streams were less efficient than RPC — the performance loss would be marginal and
linear, the kind better addressed by upgrading your hardware than by expending development time or
adding architectural complexity. Anything you might lose in performance by using text streams, you
gain back in the ability to design systems that are simpler — easier to monitor, to model, and to
understand.

Today, RPC and the Unix attachment to text streams are converging in an interesting way, through
protocols like XML-RPC and SOAP. While these don't solve all of the more general problems pointed
out by Tanenbaum and van Renesse, they do in some ways combine the advantages of both
text-stream and RP®orlds.

Threads — threat or menace?

Though Unix developers have long been comfortable with computation by multiple cooperating
processes, they do not have a native tradition of using threads (processes that share their entire address
space). These are a recent import from elsewhere, and the fact that Unix programmers generally

dislike them is not merely accident or historicahtingency.

From a complexity-control point of view, threads are a bad substitute for lightweight processes with
their own address spaces; the idea of threads is native to operating systems with expensive
process-spawning and weak IPC facilities.

By definition, though daughter threads of a process typically have separate local-variable stacks, they
share the same global memory. The task of managing contentions and critical regions in this shared
address space is quite difficult and a fertile source of global complexity and bugs. It can be done, but
as the complexity of one’s locking regime rises, the chance of races and deadlocks due to
unanticipated interactions risesrrespondingly.

Threads are a fertile source of bugs because they can too easily know too much about each others’
internal states. There is no automatic encapsulation, as there would be between processes with separate
address spaces that must do explicit IPCotmmunicate.

Thread developers have been waking up to this problem; recent thread implementations and standards
show an increasing concern with providing thread-local storage, which is intended to limit problems
due to the shared global address space. As threading APIs move in this direction, thread programming
starts to look more and more like a controlled use of shraesdory.

Accordingly, while we should seek ways to break up large programs into simpler cooperating
processes, the use of threads within processes should be a last resort rather than a first. Often, you may
find you can avoid them with techniques like asynchronous I/O using SIGIO, or shemeaty.

Keep it simple. If you can use limited shared memory, SIGIO, or poll(2)/select(2) rather than
threading, do it thawvay.

One final difficulty with threads is that threading standards still tend to be weak and underspecified (as
of early 2003). Theoretically conforming libraries for Unix standards suBt©O&X threads (1003.1¢)

can nevertheless exhibit alarming differences in behavior across platforms, especially with respect to
signals, interactions with other IPC methods, and resource cleanup times. Windows and classic
MacOS have native threading models and interrupt facilities quite different from Unix’s and will often
require considerable porting effort even for simple threading cases. The upshot is that you cannot



count on threaded programs togmetable.

A fearful synergy

The combination of threads, remote-procedure-call interfaces and heavyweight object-oriented design
is especially dangerous. Used sparingly and tastefully, any of these techniques can be valuable — but
if you are ever invited onto a project that is supposed to feature all three, fleeing in terror might well

be an appropriateaction.

We have previously observed that programming in the real world is all about managing complexity.
Tools to manage complexity are good things. But when the effect of those tools is to proliferate
complexity rather than controlling it, we would be better off throwing them away and starting from
zero. An important part of the Unix wisdom is to never fotlist



Chapter 7. Transparency
Let There Be Light
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Beauty is more important in computing than anywhere else in technology because software is so
complicated. Beauty is the ultimate defense agamsiplexity.

--David Gelernter

In Chapte[s (Textuality]we discussed the importance of textual data formats and application

protocols, representations that are easy for human beings to examine and interact with. These promote
qualities in design that are much valued in the Unix tradition but seldom if ever talked about explicitly:
transparencgnddiscoverability

Software systems are transparent when they don’'t have murky corners or hidden depths. Transparency
is a passive quality. Software systems are discoverable when they include features that are designed to
help you build in your mind a correct mental model of what they do and how they work.
Discoverabilityisan active quality — to achieve it in your software you cannot merely fail to be

obscure, you have to go out of your way to be helpful. Good documentation(f#Ips.

Transparency and discoverability are important for both users and software developers. But they're
important in different ways. Users like these properties in a Ul because they mean an easier learning
curve. Ul transparency is a large part (along with following the Rule of Least Surprise) of what people
mean when they say a Ul is ‘intuitive’ — we’ll discuss this aspect further in Clfab@rsel

[nterfaces)

Software developers like these qualities in the code itself (the part users don’t see) because they so
often need to understand it well enough to modify it. Also, a program designed so that its internal data
flows are readily comprehensible is more likely to be one that does not fail due to bad interactions that
the designer didntotice.

Transparency is a major component of what David Gelernter refers to as “beauty” in this chapter’'s
epigraph. Unix programmers, borrowing from mathematicians, often use the more specific term
“elegance” for the quality Gelernter speaks of. Elegance is a combination of power and simplicity.



Elegant code does much with little. Elegant code is not only correct but visasigparentlycorrect.

It does not merely communicate an algorithm to a computer, but also conveys insight and assurance to
the mind of a human that reads it. By seeking elegance in our code, we build better code. Learning to
write transparent code is a first, long step towards learning how to write elegant code — and taking
care to make code discoverable helps us learn how to make it transparent. Elegant code is both
transparent andiscoverable.

It may be easier to appreciate the difference between transparencty and discoverability with a pair of
extreme examples. Thenux kernel source is remarkably transparent (given the intrinsic complexity

of what it does) but not at all discoverable — acquiring the minimum knowledge needed to live in the
code and understand the idiom of the developers is difficult. On the other hand, the Emacs Lisp
libraries are discoverable but not transparent. It's easy to acquire enough knowledge to tweak just one
thing, but quite difficult to comprehend the whelestem.

In this chapter, we’ll examine features of Unix designs that promote transparency and discoverability
not just in Uls but in the parts users don’t normally see. We’'ll develop some useful rules you can
apply to your coding and development practice. Later on, in ChbptigperSource)we’ll see how

good release-engineering practices (like haviRlEADMHile with appropriate content) can make

your source code as discoverable as ylasign.

If you need a practical reminder why these qualities are important, remember that the sanity you save
by writing transparent, discoverable systems may well be that of your owndatfire

B9 An economically-minded friend comments: “Discoverability is about reducing barriers to entry;
transparency is about reducing the cost of living irctiae.”



Somecasestudies

Our normal practice is to intersperse case studies with philosophy. But in this chapter we’ll begin by
looking at some Unix designs that exhibit transparency and discoverability, and attempting to draw
lessons from them. Each major point of the analysis in the back half of the chapter draws on several of
these, and we wanted to avoid forward references to case studies the reader won’t hete seen

Casestudy: audacity

First, we’'ll look at an example of transparency in Ul design. It is audacity, an open-source editor for
sound files that runs on Unix systems, Mac OS X, and Windows. Sources, downloadable binaries,
documentation, and screen shots are available

This program supports cutting, pasting, and editing of audio samples. It supports multitrack editing
and mixing. The Ul is superbly simple; the sound waveforms are shown in the audacity window. The
image of the waveform can be cut and pasted; operations on that image are directly reflected in the
audio sample as soon as theypegormed.
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Ll 4 | &
b [l Byl B eaf

r-1 Oy JI:I.I:I!mL

J1.Elm

1 L L L 1

| duclio Track .
Stereo, 44100Hz
1.0
|

P e Halo

Click and drag 1o select audio
Proiect rate: 44100

Screen shot ddiudacity.

Multi-track editing is supported in the simplest possible way; the screen splits into multiple per-track
displays in a spatial relationship that conveys their concurrency and makes it easy to match features by
inspection. Tracks can be dragged right or left with the mouse to change their tigfdatige


http://audacity.sourceforge.net/a

Several features of this Ul are subtly excellent and worthy of emulation — the large, easily visible and
clickable operation buttons with distinguishing colors, the presence of an undo command that removes
most of the risk from experimentation, the volume slider that makes softness/loudness visually
obvious in itsshape.

But these are details. The central virtue of this program is that it has a superbly simple and natural user
interface, one that erects as few barriers between the user and the sourmbkilds.

Casestudy: fetchmail’s -v option

The author’s fetchmail program has no fewer than 60 command-line options, and a number of other
options that are settable from the run-control file but not from the command line. Of all these, the most
important — by far — isv , the verboseption.

When-v is on, fetchmail dumps each one of its POP, IMAP, and SMTP transactions to standard
output as they happen. A developer can actually see the code doing protocol with remote mailservers
and the mail transport program it forwards to, in real time. Users can send session transcripts with their
bugreports.

Example 7.1. An example fetchmail -¥ranscript

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP) at Mon, 09 Dec 2002 08:41:37 -0500 (EST): poll started

fetchmail: running ssh %h /usr/sbinfimapd (host hurkle.thyrsus.com service imap)fetchmail: IMAP< * PREAUTH [151.134.42.0] IMAP4rev1 v12.264 server ready
fetchmail: IMAP> A0001 CAPABILITY

fetchmail: IMAP< * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE SCAN SORT MAILBOX-REFERRALS LOGIN-REFERRALS AUTH=LOGIN THREAD=ORDEREDSUBJECT
fetchmail: IMAP< A0001 OK CAPABILITY completed

fetchmail: IMAP> A0002 SELECT "INBOX"

fetchmail: IMAP< * 2 EXISTS

fetchmail: IMAP< * 1 RECENT

fetchmail: IMAP< * OK [UIDVALIDITY 1039260713] UID validity status

fetchmail: IMAP< * OK [UIDNEXT 23982] Predicted next UID

fetchmail: IMAP< * FLAGS (VAnswered \Flagged \Deleted \Draft \Seen)

fetchmail: IMAP< * OK [PERMANENTFLAGS (\* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags

fetchmail: IMAP< * OK [UNSEEN 2] first unseen message in /var/spool/mailfesr

fetchmail: IMAP< A0002 OK [READ-WRITE] SELECT completed

fetchmail: IMAP> A0003 EXPUNGE

fetchmail: IMAP< A0003 OK Mailbox checkpointed, but no messages expunged

fetchmail: IMAP> A0004 SEARCH UNSEEN

fetchmail: IMAP< * SEARCH 2

fetchmail: IMAP< A0004 OK SEARCH completed

2 messages (1 seen) for esr at hurkle.thyrsus.com.

fetchmail: IMAP> A0005 FETCH 1:2 RFC822.SIZE

fetchmail: IMAP< * 1 FETCH (RFC822.SIZE 2545)

fetchmail: IMAP< * 2 FETCH (RFC822.SIZE 8328)

fetchmail: IMAP< A0005 OK FETCH completed

skipping message esr@hurkle.thyrsus.com:1 (2545 octets) not flushed

fetchmail: IMAP> A0006 FETCH 2 RFC822.HEADER

fetchmail: IMAP< * 2 FETCH (RFC822.HEADER {1586}

reading message esr@hurkle.thyrsus.com:2 of 2 (1586 header octets)

fetchmail: SMTP< 220 snark.thyrsus.com ESMTP Sendmail 8.12.5/8.12.5; Mon, 9 Dec

2002 08:41:41 -0500

fetchmail: SMTP> EHLO localhost

fetchmail: SMTP< 250-snark.thyrsus.com Hello localhost [127.0.0.1], pleased to meet you

fetchmail: SMTP< 250-ENHANCEDSTATUSCODES

fetchmail: SMTP< 250-PIPELINING

fetchmail: SMTP< 250-8BITMIME

fetchmail: SMTP< 250-SIZE

fetchmail: SMTP< 250-DSN

fetchmail: SMTP< 250-ETRN

fetchmail: SMTP< 250-DELIVERBY

fetchmail: SMTP< 250 HELP

fetchmail: SMTP> MAIL FROM:<mutt-dev-owner-esr=thyrsus.com@mutt.org> SIZE=8328

fetchmail: SMTP< 250 2.1.0 <mutt-dev-owner-esr=thyrsus.com@mutt.org>... Sender ok

fetchmail: SMTP> RCPT TO:<esr@localhost>

fetchmail: SMTP< 250 2.1.5 <esr@localhost>... Recipient ok

fetchmail: SMTP> DATA

fetchmail: SMTP< 354 Enter mail, end with "." on a line by itself

#

fetchmail: IMAP< )

fetchmail: IMAP< A0006 OK FETCH completed

fetchmail: IMAP> A0007 FETCH 2 BODY.PEEK[TEXT]

fetchmail: IMAP< * 2 FETCH (BODY[TEXT] {6742}

(6742 body octets)
fetchmail: IMAP< )
fetchmail: IMAP< A0007 OK FETCH completed

fetchmail: SMTP>. (EOM)

fetchmail: SMTP< 250 2.0.0 gBIDffW0008245 Message accepted for delivery
flushed

fetchmail: IMAP> AO008 STORE 2 +FLAGS (\Seen \Deleted)
fetchmail: IMAP< * 2 FETCH (FLAGS (\Recent \Seen \Deleted))
fetchmail: IMAP< A0008 OK STORE completed

fetchmail: IMAP> A0009 EXPUNGE

fetchmail: IMAP< * 2 EXPUNGE

fetchmail: IMAP< * 1 EXISTS

fetchmail: IMAP< * 0 RECENT

fetchmail: IMAP< A0009 OK Expunged 1 messages

fetchmail: IMAP> A0010 LOGOUT

fetchmail: IMAP< * BYE hurkle.thyrsus.com IMAP4rev1 server terminating connection
fetchmail: IMAP< A0010 OK LOGOUT completed

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP) at Mon, 09 Dec 2002 08:41:42 -0500 (EST): poll completed
fetchmail: SMTP> QUIT

fetchmail: SMTP< 221 2.0.0 snark.thyrsus.com closing connection
fetchmail: normal termination, status 0

The-v option makes what fetchmail is doing discoverable (you can see the protocol exchanges). This
isimmensehuseful. The author considered it so important that he wrote special code to mask account
passwords out of -v transaction dumps so that they could be passed around and posted without anyone



having to remember to edit sensitive information ouhefn.

This turned out to be a good call. At least eight out of ten problems reported get diagnosed within
seconds of a knowledgeable person’s eyes seeing a session transcript. There are several knowledgeable
people on the fetchmail mailing list — in fact, because most bugs are easy to diagnose, the author
seldom has to handle thdimself.

Over the years, fetchmail has acquired a reputation as a rather bulletproof program. It can be
misconfigured, but it very seldom outright breaks. Betting that this has nothing to do with the fact that
the exact circumstances of eight out of ten bugs are rapidly discoverable wouldsmarbe

We can learn from this example. The lesson is this: Don't let your debugging tools be mere
afterthoughts or treat them as throwaways. They are your windows into the code; don't just knock
crude holes in the walls, finish and glaze them. If you plan to keep the code maintained, you're always
going to need to let light intib.

Casestudy: kmalil

Now we turn from a mail transport agent to a mail user agent — kmail, the GUI mailreader distributed
with the Koffice environment. The kmail Ul is well and tastefully designed, with many good features
including automatic display of enclosed images MIRIE multipart and support for PGP key
encryption/decryption. It is friendly to end-users — the author’s beloved but utterly non-techie wife
uses and enjoyis

Many mail user agents make one gesture in the directidisadverabilitybyhaving a command that
toggles display of all the mail headers, as as opposed to a select few like From and Subject. The Ul of
kmail takes this a long stdprther.

A running kmail displays status notifications in a one-line subwindow at the bottom of its window, in
small type over a steel-gray background clearly modeled on the Netscape/Mozilla status bar. When
you open a mailbox, for example, the status bar displays counts of total and unread messages. The
visual presentation is unobtrusive; it is easy to ignore the notifications, but also easy to focus on them
if you wantto.
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This is good Ul design. It's informative, but not distracting; it gets around the reason we adduce in
chaptefll (Usernterfaceqthat the best policy for Unix tools operating normally is usually silence.
The authors showed excellent taste in borrowing the look and feel of the browsebatatus

But the extent of the kmail developers’ tastefulness will not become clear to you until you have to
troubleshoot an installation of the program that is having trouble sending mail. If you watch closely
during the send, you will observe that each line of the SMTP transaction with the remote mail
transport is echoed into the kmail status bar happens.

The kmail developers neatly avoid a trap that often makes GUI programs like kmail a terrible pain in a
troubleshooter’s fundament. Most design teams would have suppressed those messages, fearing that
they would give Aunt Tillie a touch of the vapors that would drive her back to the meretricious
pseudo-simplicity of a Windowsox.

Instead, they designed for transparency — they made the transaction messages show, but also made
them visually easy to ignore. By getting the presentation right, they managed to please both Aunt
Tillie and her geeky nephew Melvin who fixes her problems. This was brilliant; it's a technique other
GUl interfaces could and shoutenulate.

Ultimately, of course, the visibility of those messages is good for Aunt Tillie, because they mean
Melvin is far less likely to throw up his hands in frustration while trying to solve her prohilems.

The lesson here is clear. Dumbing down your Ul is only the half-smart thing to do. The really smart
thing is to find a way to leave the details accessible, but makeuhelntrusive.



Casestudy: sng

The program sng translates betw®G format and an all-text representation of it (SNG or

Scriptable Network Graphics format) that can be examined and modified with an ordinary text editor.
Called on a PNG file, it produces an SNG; called on an SNG, it recovers the equivalent PNG. The
transformation is 100% faithful and lossless in ltitections.

In syntactic style, SNG resembles CSS (Cascading Style Sheets), another language for controlling
presentation of graphics; this makes at least a gesture in the direction of the Rule of Least Surprise.
Here is a testxample:

#SNG: This is a synthetic SNG test file

# Our first test is a paletted (type 3) image.
IHDR: {

width: 16;

height: 19;

bitdepth: 8;

using color: palette;

with interlace;

}

# Standard gamma
gAMA: {0.45}

# The parameters are the standard values in the Specification section 4.2.2.3.
cHRM {

white: (0.31270, 0.32900);

red: (0.6400, 0.3300);

green: (0.3000, 0.6000);

blue: (0.1500, 0.600);

}

# Sample bit depth chunk
sBIT: {
red: 8;
green: 8;
blue: 8;
# gray: 8; # for non-color images
# alpha: 8; # for images with alpha
}

# An example palette: three colors, one of which we will render transparent
PLTE: {

(0, 0, 255)

(255, 0, 0)

"dark slate gray",

}

# Set a background color
bKGD: {
#red: 127;
# green: 127,
# blue: 127;
# gray: 127; # for non-color images
index: 0; # for paletted images

}

# Frequencies, for rendering by viewers with small palettes



hIST: {23, 55, 10}

# Test the pHYs chunk; this data isn’t really meaningful for the image
pHYs: {

xpixels: 500;

ypixels: 400;

per meter;

}

# Dummy timestamp
tIME {

year: 1999;

month: 11;

day: 22;

hour: 16;

minute: 23;

second: 17;

}

# Dummy offset
oFFs {
xoffset: 23;
yoffset: 17;
unit: micrometers

}

# Dummy physical calibration data
pCAL {
name: "dummy physical calibration data";
x0: 1234;
x1: 5678;
mapping: linear;
unit: "BTU";
parameters: 55 99;

}

# Dummy screen calibration data
SCAL {

unit: meter;

width: 0.002;

height: 0.001;

}

# Suggested palette
SPLT {
name: "A random suggested palette";
depth: 8;
(0, 0, 255), 255, 7;
(255, 0, 0),255,5;
(70, 70, 70), 255, 3;
}

# The viewer will actually use this...
IMAGE: {
pixels base64

2222222222222222
2222222222222222
0000001111100000
0000011111110000
0000111001111000
0001110000111100
0001110000111100



0000110001111000
0000000011110000
0000000111100000
0000001111000000
0000001111000000
0000000000000000
0000000110000000
0000001111000000
0000001111000000
0000000110000000
2222222222222222
2222222222222222

}

tEXt: { # Ordinary text chunk
keyword: "Title";
text: "Sample SNG script";

}

ZTXt: { # Compressed text chunk
keyword: "Author";
text: "Eric S. Raymond";

}

glFg { # GIF Graphic Extension chunk
disposal: 23;
input: 17;
delay: 55;

}

glFx { # GIF Application Extension chunk
identifier: "SNGCOMPI";
code: "SNG";
data: "Dummy application data\n"
“illustrating assembly of multiple strings\n";

}

private prlv {
"Test data for the private chunk";

}

# Test file ends here

The point of this tool is to enable users to edit various ob&M€&echunk types that are not

necessarily supported by conventional graphics editors. Rather than writing special-purpose code to
grovel through the PNG binary format, the user can simply flip an image into an all-text
representation, edit that, and massagadk.

The gains here go beyond the time not spent writing special-purpose code for manipulating binary
PNGs, however. The sng code itself is not especially transparent, but it promotes transparency in
larger systems of programs by making the entire contents of BidGxsserable.

Casestudy: the terminfo database

The terminfo database is a collection of descriptions of video-display terminals. Each entry describes
the escape sequences that perform various manipulations on the terminal screen, such as inserting or
deleting lines, erasing from the cursor position to end of line or screen, or beginning and ending screen
highlights such as reverse video, underlindylimk.



The terminfo database is used by the curses(3) libraries. These underlie the “roguelike” interface style
we discuss in Chaptgil (Usernterfaceg)and some very widely used programs such as mutt(1),
lynx(1), and slrn(1). Though the terminal emulators such as xterm(1) that run on today’s bit-mapped
displays all have capabilities that are minor variations on those of the ANSI X3.64 standard and the
venerable VT100 terminal, there is still enough variation that hardwiring ANSI capabilities into
applications would be a badea.

The design of terminfo benefits from experience with an earlier capability format called termcap. The
database of termcap descriptions lived in a textual format in one bifgfdéermcap  ; though
this format is now obsolete, your Unix system almost certainly includepya

Normally, the key used to look up your terminal type entry is the environment varEaRM which

for purposes of this case study is set by m&fc Applications that use terminfo (or termcap) pay a
small penalty in startup lag; when the curses(3) library initializes itself, it has to look up the entry
corresponding td ERMand load the entry intmemory.

Experience with termcap showed that the startup penalty was dominated by the time required to parse
the textual representation of capabilities. Accordingly, terminfo entries are binary structure dumps that
can be marshalled and unmarshalled more quickly. There is a master textual format for the entire
database, the terminfo capability file. That file (or individual entries) can be compiled to binary form
with the terminfo compiler tic(1); binary entries can be decompiled to the editable text format by
infocmp(1).

The designers of terminfo could have optimized for speed in a second way. The entire database of
binary entries could have been put in some kind of big opaque database file. What they actually did
instead was cleverer and more in the Unix spirit. Terminfo entries live in a directory hierarchy, usually
on modern Unixes undéusr/share/terminfo . Consult the terminfo man page to find the

location on yousystem.

If you look in the terminfo directory, you'll see subdirectories named by single printable characters.
Under each of these are the entries for each terminal type that has a name beginning with that letter.
The goal of this organization was to avoid having to do a linear search of a very large directory; under
more modern Unix filesystems, which represent directories with B-trees or other structures optimized
for fast lookup, it won't beecessary.

Thus, the cost of opening a terminfo entry is two inode lookups and a file open. But since looking up

the same entry in one big database would have required an inode lookup and open for the database, the
incremental cost for terminfo’s organization is at most one inode lookup. Actually, it's less than that;

it's the cost difference between an inode lookup and whatever lookup method the one big database
would have used. This is probably marginal, and quite tolerable once per application atistartup

Terminfo uses the filesystem itself as a simple hierarchical database. This is a superb bit of
constructive laziness, obeying the Rule of Economy and the Rule of Transparency. It means that all the
ordinary tools for navigating, examining and modifying the filesystem can be used to navigate,
examine, and modify the terminfo database; no special ones (other than tic(1) and infocmp(1) for
packing and unpacking the individual records) need to be written and debugged. It also means that
work on speeding up database access would be work on speeding up the filesystem itself, tuning that
would benefit many more applications than just usecaifes(3).



There is one additional advantage of this organization that doesn’t come up in the terminfo case; you
get to use Unix’s permissions mechanism rather than having to invent your own access control layer
with its own bugs. This falls out as a consequence of adopting the “everything is a file” philosophy of
Unix rather than trying to figtit.

The contrast with the formats used by the Microsoft Windegsstry files is instructive. Registries

are property databases used by both Windows itself and applications. Each registry lives in one big

file. Registries contain a mix of text and binary data that requires specialized editing tools. The
one-big-file approach leads, among other things, to the notorious ‘registry creep’ phenomenon;

average access time rises without bound as new entries are added. Because there is no standard API for
editing the registry provided by the system, applications use ad-hoc code to edit it themselves, making

it notoriously subject to corruption that can lock up the estistem.

Using the Unix filesystem as a database is a tactic other applications with simple database
requirements might do well to emulate. Good reasons not to do it are more likely to have to do with

the database keys not naturally looking like filenames than they are with any performance problems. In
any case, it's the sort of good fast hack that can be very usgiudtatyping.

Casestudy: Freeciv datafiles

In Chapte[6 (Multiprogramming)we exhibited the Freeciv strategy game as an example of
client-server partitioning. This game has another notable architectural feature; much of the game’s
fixed data, rather than being wired into the server code, is expressed in a property registry read in by
the game server at starttime.

The game’s registry files are written in a textual data-file format that assembles text strings (with
associated text and numeric properties) into various internal lists of important data (such as nations
and unit types) in the game server. The minilanguage has an include directive, so game data can be
broken up into semantic units (different files) that are each separately editable. This design choice has
been carried through to such an extent that it's possible to define new nations and new unit types
simply by creating new declarations in the data files, without touching the server adide at

The Freeciv’s server’s startup parsing has an interesting feature which creates something of a conflict
between two of Unix’s design rules, and is therefore worth closer examination. The server ignores
property names it doesn’t know howuse.

This makes it possible to declare properties that the server doesn’t yet use without breaking the startup
parsing. It means that development of the game data (policy) and the server engine (mechanism) can
be cleanly separated. On the other hand, it also means startup parsing won’t catch simple misspellings
of attribute names. This quiet failure seems to violate the RuReodir.

To resolve this conflict, notice that it's the server’s joligethe registry data, but the task of carefully
error-checking that data could be handed off to another program to be run by human editors each time
the registry is modified. The ideal Unix solution would be a separate auditing program that analyzes
either a machine-readable specification of the ruleset format or the source of the server code to
determine the set of properties it uses, parses the Freeciv registry to determine the set of properties it
provides, and prepares a differemeport.

The aggregate of all Freeciv data files is functionally similar to a Windows registry, and even uses a
syntax resembling the textual portions of registries. But the creep and corruption problems we noted
with the Windows registry don’t crop up here because no program (either within or outside the Freeciv



suite)writesto these files. It's a read-only registry edited only by the gamaigstainers.

The performance impact of data file parsing is minimized because for each file the operation is
performed only once, at either client or server statitop.

B9 Actually, TERMs set by the system at login time. For actual terminals on serial lines, the mapping
from tty lines toTERMvalues is set from a system configuration file at boot time; the details vary
between Unixes. Terminal emulators like xterm(1) set this variablaselves.



Designingfor transparency anddiscoverability

To design for transparency and discoverability, you need to apply every tactic for keeping your code
simple, and also concentrate on the ways in which your code is a communication to other human
beings. The first questions to ask, after “Will this design work?” are “Will it be readable to other
people? Is it elegant?”. We hope it is clear by now that these questions are not fluff and that beauty is
not a luxury. These qualities in the human reaction to software are essential for reducing its bugginess
and increasing its long-termaintainability.

The Zen oftransparency

One pattern that emerges from the examples we’ve examined so far in this chapter is this: if you want
transparent code, the most effective route to it is simply not to layer too much abstraction over what
you are manipulating with thende.

In Chaptef# (Modularity)s section on the value of detachment, our advice was to abstract and

simplify and generalize, to try and detach from the particular, accidental conditions under which a
design problem was posed. The advice to abstract does not actually contradict the advice against
excessive abstractions we're developing here, because there is a difference between getting free of
assumptions and getting lost in too much abstraction. This is part of what we were driving at when we
developed the idea that glue layers need to bethizpt

One of the main lessons of Zen is that we ordinarily see the world though a haze of preconceptions and
fixed ideas that proceed from our desires. To achieve enlightenment, Zen teaches us not merely to let
go of desire and attachment, but to experience reality exactly as it is — without the preconceptions and
the fixed ideas getting in thveay.

This is excellent pragmatic advice for software designers. It's part of what's implicit in the classic
Unix advice to be minimalist. Software designers are clever people who form ideas (abstractions)
about the application domains they deal with. They organize the software they write around those
ideas. Then, when debugging, they often find they have great trouble seeing through those ideas to
what is actually goingn.

Any Zen master would recognize this problem instantly, yell “Five pounds of flax!”, and probably
clout the student a good one. Consciously designing for transparency is a slightly less mystical way of
addressingf.

In Chaptefd (Modularity) we criticized object-oriented programming in terms likely to prove a bit
shocking to programmers who were raised on the 1990s gopé&l.@bject-oriented design doesn’t

have to be over-complicated design, but we’ve observed that too often it is. Too many OO designs are
spaghettilike tangles of is-a and has-a relationships, or feature thick layers of glue in which many of
the objects seem to exist simply to hold places in a steep-sided pyramid of abstractions. Such designs
are the opposite of transparent; they are (notoriously) opaque and diffidatiug.

Unix programmers are the original zealots about modularity, but tend to go about it in a quieter way.
Keeping glue layers thin is part of it; more generally, our tradition teaches us to build lower, hugging
the ground with with algorithms and structures that are designed to be simpiareparent.

As with Zen art, the simplicity of good Unix code depends on exacting self-discipline and a high level
of craft, neither of which are necessarily apparent on casual inspection. Transparency is hard work, but
worth the effort for more than merely artistic reasons. Unlike Zen art, software requires debugging —



and usually needs continuing maintenance, forward-porting, and adaptation throughout its lifetime.
Transparency is therefore more than an esthetic triumph, but a victory that will be reflected in lower
costs throughout the softwardifecycle.

Coding for transparency anddiscoverability.

Transparency andiscoverability like modularity, are primarily properties of designs, not code. It is
not sufficient to get right the low-level elements of style, such as indenting code in a clear and
consistent way or having good variable-naming conventions. They have much more to do with code
properties that are less obvious to inspection. Here are a few tabdnk

e What is the maximum static depth of your procedure-call hierarchy? That is, leaving out
recursions, how many levels of call might a human have to model mentally to understand the
operation of theode?

® Does the code have invarigmmopertie$d that are both strong and visible? Invariant properties
help human beings reason about code and detect probkas.

® Are the function calls in your APIs individually orthogonal, or do they have magic flags and
mode bits that have a single call doing multijgleks?

® Are there a handful of prominent data structures or a single global scoreboard that captures the
high-level state of the system? Is this state easy to visualize and inspect, or is it diffused among
many individual global variables or objects that are hafh¢t?

® |s it easy to find the portion of the code responsible for any given function? How much attention
have you paid to the readability not just of individual functions and modules but the whole
codebase?

® Does the code proliferate special cases or avoid them? How many magic numbers (unexplained
constants) does it have in it? Is it easy to discover the implementation’s limits (such as critical
buffer sizes) bynspection?

It's best for code to be simple. But if it answers these sorts of questions well, it can be very complex
without putting an impossible cognitive burden on a humaimtainer.

The reader might find it instructive to compare these with our checklist questions about modularity in

Chaptef4 (Modularity}

Transparency and avoidingoverprotectiveness.

Close kin to the programmer tendency to build over-elaborate castles of abstractions is a tendency to
overprotect others from the low-level details. While it's not bad practice to hide those details in the
program’s normal mode of operation (fetchmail’s -v switch is off by default), they should be
discoverable. There’s an important difference between hiding them and makinigaloeassible.

Programs thatannotreveal what they are doing make troubleshooting far more difficult. Thus,
experienced Unix users actually take the presence of debugging and instrumentation switches as a
good sign, and their absence as possibly a bad one. Absence suggests an inexperienced or careless
developer; presence suggests one with enough wisdom to follow the Ruémsparency.



The temptation to overprotect is especially strong in GUI applications targeted for end users, like
mail-readers. One reason Unix developers have been cool towards GUI interfaces is that, in their
designers’ haste to make them ‘user-friendly’ each one often becomes frustratingly opaque to anyone
who has to solve user problems — or, indeed, interact with it anywhere outside the narrow range
predicted by the user-interfadesigner.

Worse, programs that are opaque about what they are doing tend to have a lot of assumptions baked
into them, and to be frustrating or brittle or both in any use case not anticipated by the designer. Tools
that look glossy but shatter under stress are not good longrtéum

Unix tradition pushes for programs that are flexible across a broader range, including the ability to
present as much state and activity information to the user as the user indicates he is willing to handle.
This is good for troubleshooting; it is also good for growing smarter, more self-tedienst

Transparency and editablerepresentations.

Another theme that emerges from these examples is the value of programs that flip a problem out of a
domain where transparency is hard into one where it is easy. Audacity, sng(1) and the
tic(1)/infocmp(1) pair all have this property. The objects they manipulate are not really conformable to
the hand and eye; audio files are not visual objects, and while images expré¥d&fanmat are

visual, the complexities of PNG annotation chunks are not. All three applications turn manipulation of
their binary file formats into a problem to which human beings can more readily apply intuition and
competences gained from everydsperience.

A rule all of these programs follow is that they degrade the representation as little as possible — in
fact, they translate it reversibly and losslessly. This property is very important, and worth
implementing even if there is no obvious application demand for that kind of 100% fidelity. It gives
potential users confidence that they can experiment without degradindateeir

All of the advantages of textual data-file formats that we discussed in Chdpeettuality] also apply

to the textual formats that sng(1), infocmp(1) and their kin generate. One important application for
sng(1) is robotic generation BNG image annotations by scripts — because sng(1) exists, such scripts
are easier tovrite.

Whenever you face a design problem that involves editing some kind of complex binary object, the
Unix tradition encourages asking first off whether you can write a tool analogous to sng(1) or the
tic(1)/infocmp(1) pair that can do a lossless mapping to an editable textual format and back. There is
no established term for programs of this kind, but we’ll call thextualizers

If the binary object is dynamically generated or very large, then it may not be practical or possible to
capture all the state with a textualizer. In that case, the equivalent task is to write a browser. The
paradigm example is fsdb(1), the file-system debugger supported under various Unixes; there is a
Linux equivalent called debugfs(1). A more modern one is dig(1), which is a textualizer/browser for
querying the DNS database. All three are simple CLI programs that could be drisenpls.

Writing a textualizer or browser is a valuable exercise for at leastdasons:

® You get an excellent learnimxperienceThere may be other ways that are as good to learn about
the structure of the object, but none that are obviduetter.



® You get capability to dump the contents of the structure for inspecticthedniggingBecause
such a tool makes dumping easy, you'll do it more. You'll get more information, probably leading to
moreinsight.

® You get the ability to easily generate test loads and ungagak This means you are more
likely to probe the odd corners of the object’s state space — and to break the associated software, so
you can fix it before your users breidk

® You get code you may be abledeuse.lf you're careful about how you write the
browser/textualizer and keep the CLI interpreter properly separated from the
marshalling/unmarshalling library, you may find you have code that can be re-used for your actual
application.

After you've done this, you may well discover that it's possible to apply the “separated engine and
interface” pattern using your textualizer/debugger as the engine. All the usual benefits of this pattern

will apply.

Transparency, fault diagnosis, and faultrecovery

Yet another benefit of transparency, related to ease of debugging, is that transparent systems are easier
to perform recovery actions on after a bug bites — and, often, more resistent to damage from bugs in
the firstplace.

In comparing the terminfo database with Windows registries we noted that registries are notoriously
subject to being corrupted by buggy application code. This can make the entire system unusable. Even
if it doesn’t, recovery can be difficult if the corruption confuses the specialized registry-editiag

Our Unix case studies illustrate ways that design for transparency can prevent this class of problem.
Because the terminfo database is not one big file, botching one terminfo entry does not make it
unusable. Fully textual one-big-file formats like termcap are usually parsed with methods which
(unlike block reads of binary structure dumps) can recover from single-point errors. Syntax errors in
an SNG file can be corrected by hand without requiring specialized editors that might refuse to load a
damaged PN@nage.

Going back to the kmail case study, that program makes fault diagnosis easier because it obeys the
Rule of Repair — SMTP failures are noisy. Not obnoxiously noisy in this case, but you don’t have to
decode a layer of obfuscatory messages generated by kmail itself in order to see what the interaction
with the SMTP server looks like. All you have to do is look in the right place, because kmail is being
transparent and not throwing away information about the error state. (It helps that SMTP itself is
texctual and include human-readable status messagesranggactions.)

Discoverability tools like textualizers and browsers also make fault diagnosis easier. We've already
touched on one reason; they make inspecting the state of the system easier. But there is another effect
at work as well: textualized versions of data tend to have useful redundancies (such as using
whitespace for visual separation as well as explicit delimiters for parsing). These are present to make
them easier to read for humans, but also have the effect of make them more resistant to being
irrepairably trashed by point failures. A corrupted chunk in a PNG file is seldom recoverable, but the
human capacity for pattern recognition and reasoning from context might be able to repair the
equivalent SNGorm.



Over and over again, the Rule of Robustness is clear. Simplicity plus transparency lowers costs,
reduces everybody’s stress, and frees people to concentrate on new problems rather than cleaning up
after oldmistakes.

B Aninvariant is a property of a software design that is preserved by every operation in it. For
example, in most databases it is an invariant that no two records may have the same@ey. In a
program that correctly manipulates strings, every string buffer must contain a terminating NUL byte at
all times. In a banking or accounting system, no account can hold a number of dollars leesothan



Designingfor maintainability

Software is maintainable to the extent that people who are not its author can successfully understand
and modify it. Maintainability demands more than code that works; it demands code that follows the
Rule of Clarity and communicates successfully to human beings as wellcastpeter.

Unix programmers have a lot of implicit knowledge available to them about what makes for
maintainable code, because Unix hosts source code that goes back decades. For reasons we’ll discuss
in Chapte[l5 (Portability] Unix programmers learn a tendency to scrap and rebuild rather than

patching grubby code (see Rob Pike’s meditation on this subject in Ghdptatosophy). Thus, any

sources that have survived more than a decade of evolutionary pressure have been selected for
maintainability. These old, successful, well-established projects with maintainable code are the
community’s models fopractice.

A question Unix programmers — and especially Unix programmers in the open-source world — learn
to ask about tools they are evaluating for use is: “Is this code live, dormant, or dead?”. Live code has
an active developer community attached to it. Dormant code has often become dormant because the
pain of maintaining it exceeded its utility to its originators. Dead code has been dormant for so long
that it would be easier to reimplement an equivalent from scratch. If you want your code to live,
investing effort to make it maintainable (and therefore attractive to future maintainers) will be one of
the most effective ways you can spend ytime.

Code that is designed to be both transparentatdverabléhas gone a long way towards being
maintainable. But there are other practices we can observe in these model projects that are worth
emulating.

One very important one is an application of the Rule of Clarity; choosing simple algorithms. In
Chaptefl (Philosophylwe quoted Ken Thompson: “When in doubt, use brute force”.
Thompsonunderstodtie full cost of complicated algorithms — not just that they’re more bug-prone
when initially implemented, but that they’re harder for maintainers down the lined&rstand.

Another important practice is hacker’'s guides. It has always been highly approved behavior for source
code distributions to include documents informally describing the key data structures and algorithms
in the code — in fact, Unix programmers have often been better about producing hacker’s guides than
they are about writing end-usgocumentation.

The open-source community has seized on and elaborated this custom. Besides being advice to future
maintainers, hacker’s guides for open-source projects are also designed to make it easy for casual
contributors to add features or fix bugs. The Design Notes file shippedetatimailisrepresentative.
TheLinux kernel sources include literally dozendluése.

In Chaptefl7 (OpenSource)we’ll describe conventions that Unix developers have evolved for
making source code distributions easy to examine and easy to build running code from. These
practices, too, promotaaintainability.




Chapter 8. Minilanguages

Finding a notation that sings
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A good notation has a subtlety and suggestiveness which at times makes it almost seem like a live
teacher.

--BertrandRussell

One of the most consistent results from large-scale studies of error patterns in software is that
programmer error rates in defects per hundreds of lines are largely independent of the language in
which the programmers are codilf . Higher level languages, which allow you to get more done in
fewer lines, mean fewer bugswsll.

Unix has a long tradition of hosting little languages specialized for a particular application domain,
languages that can enable you to drastically reduce the line count of your programs. Domain-specific
language examples include the numerous Unix typesetting languages (troff, egn, tbl, pic, grap), shell
utilities (awk, sed, dc, bc), and software development tools (make, yacc, lex). There is a fuzzy
boundary between domain-specific languages and the more flexible sort of application run control file
(sendmail, BIND, X); another with data file formats, and another with scrifstmguages(whickve’ll

survey in Chaptgt2 (Languages)

Historically, domain-specific languages of this kind have been called ‘minilanguages’ in the Unix

world, because early examples were small and low in complexity relative to general-purpose
languages. But if the application domain is complex (in that it has lots of different primitive operations
and/or involves manipulation of intricate data structures), an application language for it may have to be
rather more complex than some general-purpose languages. But we’ll keep the traditional term
‘minilanguage’ in order to emphasize that the wise course is usually to keep these designs as small and
simple agossible.



The domain-specific minilanguage is an extremely powerful design idea. There are at least three ways
you can get there, two of them good and one of tti@ngerous.

One right way to get there is to realize up front that you can use a minilanguage design to push your
specification of a programming problem up a level, into a notation that is more compact and
expressive than you could support in a general-purpose language. As with code generation and
data-driven programming, a minilanguage lets you take practical advantage of the fact that the defect
rate in your software will be largely independent of the level of the language you are using; more
expressive languages mean shorter programs and lhexgsr

The second right way to get to a minilanguage design is to notice that one of your specification file
formats is looking more and more like one — that is, it is developing complex structures and implying
actions in the application you are controlling. Is it trying to describe control flow as well as data
layouts? If so, it may be time to promote that control flow from being implicit to being explicit in your
specificationlanguage.

The wrong way to get to a minilanguage design is to extend your way to it, one patch and crufty added
feature at a time. On this path, your specification file keeps sprouting more implied control flow and
more tangled special-purpose structures until it has become an ad-hoc language without your noticing
it. Some legendary nightmares have been spawned this way; the example every Unix guru will think of
is thesendmail.cf  configuration file associated with the sendmail rivaihsport.

Sadly, most people do their first minilanguage the wrong way, and only realize later what a mess it is.
Then the question is: how to clean it up? Sometimes this implies rethinking the entire application
design. Another notorious example of language-by-feature creep was the editor TECO, which grew
first macros and then loops and conditionals as programmers wanted to use it to package increasingly
complex editing routines. The resulting ugliness was eventually fixed by a redesign of the entire editor
to be based on an intentional language; this is how Emacs Lisp (which we’ll survey éxabbved.

All sufficiently complicated specification files aspire to the condition of minilanguages. Therefore, it
will often be the case that your only defense against designing a bad minilanguage is knowing how to
design a good one. This need not be a huge step or involve knowing a lot of formal language theory;
with modern tools, learning a few relatively simple techniques and bearing good examples in mind as
you design should bsufficient.

In this chapter we’ll examine all the kinds of minilanguages normally supported under Unix, and try to
identify the kinds of situation in which each of them represents an effective design solution. This

chapter is not meant to be an exhaustive catolog of Unix languages, but rather to bring out the design
principles involved in structuring an application around a minilanguage. We’ll have much more to say

about languages for general-purpose programing in CHEpteanguages$)

We'll need to start by doing a little taxonomy, so we’ll know what we’re talking aboutdiater

B4 Les Hatton reports by email on the analysis in his book in preparatémareFailure:
“Provided you use executable line counts for the density measure, the injected defect densities vary
less between languages than they do between engineers by about a fHator of



Taxonomy of languages

All the languages ifrigure8.7 are described in case studies, either in this chapter or elsewhere in this
book. For the general-purpose interpreters near the right-hand side, see [Ch@girguages$)

Figure 8.1. Taxonomy oflanguages.
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In Chapte[ (Textuality]we looked at Unix conventions for data files. There’s a spectrum of
complexity in these. At the low end are files that make simple associations between names and
properties; thenewsrc is a good example. Further up the scale we start to get formats that marshal
or serialize data structures; tARBIGandSNG formats are (equivalent) good examplethist

A structured data file format starts to border on being a minilanguage when it expresses not just
structure but actions performed on some interpretive context (that is, memory that is outside the data
file itself). XML markups tend to straddle this border; the example we’ll look at here is Glade, a code
generator for building GUhterfaces.

Formats that are both designed to be read and written by humans (rather than just programs) and are
used to generate code, are firmly in the realm of minilanguages. Yacc and Lex are the classic

examples. We'll discuss those in Chaf@€Generatior})

The Unix macro processor, m4, is another very simple declarative minilanguage. It has often been
used as a pre-processing stage for athialanguages.

Unix makefiles, which are designed to automate build processes, express dependency relationships
between source and derived filf§ and the commands required to make each derived file from its
sources. When you run make, it uses those declarations to walk the implied tree of dependencies,
doing the least work necessary to bring your build up to date. Like Yacc and Lex, makefiles are a
declarative minilanguage; they set up constraints that imply actions performed on an interpretive
context (in this case, the portion of the filesystem where the source an generated files live). We'll

return to Makefiles in Chaptfi8 (Tools}

XSLT, the language used to describe transformations of XML, is at the high end of complexity for
declarative minilanguages. It's complex enough that it's not normally thought of as a minilanguage at
all, but it shares some important characteristic of such languages which we’ll examine when we look
at it in more detaibelow.

The spectrum of minilanguages ranges from declarative (with implicit actions) to imperative (with
explicit actions). The run-control syntaxfetchmail(1)can be viewed as either a very weak
imperative language or a declarative language with implied control flow. The troff and Postscript



typesetting languages are imperative languages with a lot of special-purpose domain expertise baked
into them.

Some task-specific imperative minilanguages start to border on being general-purpose interpreters.
They reach this level when they are explicitly Turing-complete — that is, they can do both
conditionals and loops (or recursidgf with features that are designed to be used as control
structures. Some languages, by contrast, are only accidentally Turing-complete — they have features
that can be used to implement control structures as a sort of side-effect of what they are actually
designed talo.

The bc(1) and dc(1) interpreters we looked at in Chifptelultiprogramming)are good examples of
specialized imperative minilanguages that are explicitly Turing-complete.

We are over the border into general-purpose interpreters when we reach languages likedpmacs
andJavaScripthat are designed to be full programming languages run in specialized contexts. We'll
have more to say about these when we discuss embedded staipginggesateron.

The spectrum in interpreters is one of increasing generality; the flip side of this that a more
general-purpose interpreter embodies fewer assumptions about the context in which it runs. With
increasing generality there usually comes a richer ontology of data types. Shiadl hage relatively
simple ontologiesPerl, Python,andJavamore complex ones. We'll return to these general-purpose

languages in Chapt@2 (Languages)

B9 For less technical readers: the compiled form Gfpmogram is derived from its C source form by
compilation and linkage. The Postcript version of a troff document is derived from the troff source; the
command to make the former from the latter is a troff invocation. There are many other kinds of
derivation; makefiles can express almost athein.

B4 Any Turing-complete language could theoretically be used for general-purpose programming, and
is theoretically exactly as powerful as any other Turing-complete language. In practice, some
Turing-complete languages would be far too painful to use for anything outside a specified and narrow
problemdomain.



Applying minilanguages

Designing with minilanguages involves two distinct challenges. One is having existing minilanguages
handy in your toolkit, and recognizing when they can be applied as-is. The other is knowing when it is
appropriate to design a custom minilanguage for an application. To help you develop both aspects of
your design sense, about half of this chapter will consist ofstades.

Casestudy: sng

In Chaptef7 (Transparencyyve looked at sng(1), which translates betweBiGandan editable

all-text representation of the same bits. The SNG data file format is worth reexamining for contrast
here because it is not quite a domain-specific minilanguage. It describes a data layout, but doesn’t
associate any implied sequence of actions witlu#ta.

SNG does, however, share one important characteristic with domain-specific minilanguages that
binary structured data formats like PNG do notransparencyStructured data files make it possible

for editing, conversion, and generation tools to cooperate without knowing about each others’ design
assumptions other than via the medium of the minilanguage. What SNG adds is that, like a
domain-specific minilanguage, it's designed to be easy to parse by eyeball and edit with
general-purpostmols.

Casestudy: Glade

Glade is an interface builder for the open-source GTK toolkit library fgfX It allows you to

develop a GUI interface by interactively picking, placing, and modifying widgets on an interface
panel. The GUI editor produces an XML file describing the interface; this, in turn, can be fed to one of
several code generators that will actually grind@ut++, Pythonor Perlcode for the interface. The
generated code then calls functions you write to supply behavior itttehiace.

Glade’s XML format for describing GUIs is a good example of a simple domain-specific
minilanguage. Sgexample8.1|for a “Hello, world!” GUI in Gladgormat.

Example 8.1. Glade “Hello,World”

<?xml version="1.0"?>
<GTK-Interface>

<widget>
<class>GtkWindow</class>
<name>HelloWindow</name>
<border_width>5</border_width>
<Signal>
<name>destroy</name>
<handler>gtk_main_quit</handler>
</Signal>
<title>Hello</title>
<type>GTK_WINDOW_TOPLEVEL</type>
<position>GTK_WIN_POS_NONE</position>
<allow_shrink>True</allow_shrink>
<allow_grow>True</allow_grow>
<auto_shrink>False</auto_shrink>

<widget>
<class>GtkButton</class>



<name>Hello World</name>

<can_focus>True</can_focus>

<Signal>
<name>clicked</name>
<handler>gtk_widget_destroy</handler>
<object>HelloWindow</object>

</Signal>

<label>Hello World</label>

</widget>
</widget>

</GTK-Interface>

A valid specification in Glade format implies a repertoire of actions by the GUI in response to user
behavior. The Glade GUI treats these specifications as structured data files; Glade code generators, on
the other hand, use them to write programs implement@gla

Once you get past the verbosity of XML, this is a fairly simple language. It does just two things:
declare GUI-widget hierarchies and associate properties with widgets. You don’t actually have to
know a lot about how Glade works to read the specification above. In fact, if you have any experience
programming in GUI toolkits, reading it will immediately give you a pretty good visualization of what
Glade does with the specification. (Hands up everyone who predicted that this particular specification
will give you a single button widget in a winddvame.)

This kind of transparency and simplicity is the mark of a good minilangilegignand. The mapping

between the notation and domain objects is very clear. The relationships between objects are expressed
directly, rather than through name references or some other sort of indirection that you have to think to
follow.

The ultimate functional test of a minilanguage like this one is simple: can | hack it without reading the
manual? For a significant range of cases, Glade’s answer is yes. For example, if you know the C-level
constants that GTK uses to describe window-positioning hints, you'll recognize
GTK_WIN_POS_NONE as one and instantly be able to change the positioning hint associated with
this GUL.

The advantage of using Glade should be clear. It specializes in code generation so you don’t have to.
That's one less routine task you have to hand-code, and one fewer source of harmgeded

More information, including source code and documentation and links to sample applications, is
available at thigslade projecpag¢ Glade has been portedWindows.

Casestudy: m4

The m4(1) macro processor interprets a declarative minilanguage for describing transformations of
text. An m4 program is a set of macros which specifies ways to expand text strings into other strings.
Applying those declarations to an input text with m4 performs macro expansion and yields an output
text. (TheC is used to perform similar services for C compilers, though in a rather difétytnj)

[Example8.d shows an m4 macro which directs m4 to expand each occurrence of the string "OS" in its
input into the string "operating system" on output. This is a trivial example; m4 supports macros with
arguments that can be used to do more than transform one fixed string into anotherinfypinpat

your shell prompt will probably display on-line documentation forldmguage.


http://glade.gnome.org/

Example 8.2. A sample m4nacro
define('OS’, ‘operating system’)

The m4 macro language supports conditionals and recursion. The combination can be used to
implement loops, so m4 is accidentally Turing-complete. But actually trying to use m4 as a
general-purpose language would be deeplyerse.

The m4 macroprocessor is usually employed as a preprocessor for minilanguages that lack a built-in
notion of named procedures or a built-in file-inclusion feature. It's an easy way to extend syntax so the
combination simulates both thefeatures.

Use m4 with caution, however. Unix experience has taught minilanguage designers to be wary of
macroexpansior{ﬂ , for reasons we’ll discugater in thechaptelr

Casestudy: XSLT

XSLT, like m4, is a language for describing transformations of a text stream. But it does much more
than simple macro substitution; it is the language used to write XML stylesheets. XSLT describes
mutations of XML documents. For practical applications, see the description of XML document
processing in Chaptg6 (Documentation)XSLT is described by a World Wide Web standard and has
several open-sourémplementations.

Like m4 XSLT is purely declarative, but unlike m4 it is designed to be Turing-complete. It is quite
complex, certainly the most difficult language to master of any in this chapter’'s case studies — and
probably the most difficult of any language mentioned intibisk.F] .

Despite its complexity, XSLT really is a minilanguage. It shares important (though not universal)
characteristics of thiereed:

® A restricted ontology of types, with (in particular) no analog of record structuegsags.

e Restricted interface to the rest of world. XSLT processors are designed to filter standard input to
standard output, with a restricted ability to read and write files. They can’t open sockets or run
subcommands.

We've included a glance at XSLT here partly to illustrate the point that ‘declarative’ does not imply
either ‘simple’ or ‘weak’, and mostly because if you have to work with XML documents, you will
someday have to face the challenge thxiSkT.

XSLT: Mastering XMOransformationgTidwell]|is a good introduction to the language. A brief
tutorial with examples is available on tvebFq .

Casestudy: the DWB tools

The troff(1) typesetting formatter was, as we noted in ChRdidistory} Unix’s original killer
application. We'll examine troff in more detail in Chagtér(Documentatiorj)for now, it's sufficient

to note that it is a good example of an imperative minilanguage that borders on being a full-fledged
interpreter (it has conditionals and recursion but not loops; it is accidentally Turing-complete).
Open-source Unixes host an enhanced implementation, groff(1), from the Free Setiwadation.




For this chapter, the important thing to know about troff(1) is that it is the center of a suite of
formatting tools (collectively called Documenter’'s Workbench or DWB), all of which are
domain-specific minilanguages of various kinds. Most are either preprocessors or postprocessors for
troff markup.

The postprocessors (‘drivers’ in DWB terminology) are normally not visible to troff users. The
original troff emitted codes for the particular typesetter the Unix development group had available in
1970; later in the 1970s these were cleaned up into a device-independent little language for placing
text and simple graphics on a page. The postprocessors translate this nameless language into
something modern imaging printers can actually accept — the most important of these (and the
modern default) iRostscript.

The preprocessors are more interesting, because they actually add capabilities to the troff language.
There are three common ones: tbl(1) for making tables, eqn(1) for typesetting mathematical equations,
and pic(1) for drawing diagrams. Less used, but still live, are grn(1) for graphics, and refer(1) and
bib(1) for formatting bibliographies. Open-source equivalents of all of these shigraith

Some other preprocessors have no open-source implementation and are no longer in common use.
These include grap(1) and ideal(1), for plotting functions. A younger sibling of the family, chem(2) for
drawing chemical structural formulas, has been reported in the literature but not spotted in the wild
(e.g., outside of Bell Labs).

Each of these preprocessors is a little program that accepts a minilanguage and compiles it into troff
requests. Each one recognizes the markup it is supposed to interpret by looking for a unique start and
end request, and passes through unaltered any markup outside those (tbl looks for .TH/.TE, pic looks
for .PS/.PE, etc.). Thus, most of the preprocessors can normally be run in any order without stepping
on eactother.

cat thesis.ms | chem | tbl | refer | grap | pic | eqn | groff -Tps >thesis.ps

The above is a full-Monty example of a DWB document-preoceggidine,for a hypothetical thesis
incorporating chemical formulas, mathematical equations, tables, bibliographies, plots, and diagrams.
(The cat(1) command simply copies its input or a file argument to its output; we use it here to
emphasisize the order of operations.) In practice modern troff implementations tend to support
command-line switches that can invoke at least tbl(1), eqn(1) and pic(1), so it isn’t necessary to write
such an elaborate pipeline. Even if it were, these sorts of build recipes are normally composed just
once and stashed away in a makefile for repaaed

The document markup of DWB is in some ways obsolete, but the range of problems these
preprocessors address gives some indication of the power of the minilanguage model — it would be
extremely difficult to embed equivalent knowledge into a WYSIWYG word processor. There are some
ways in which modern XML-based document markups and toolchains are still, in 2003, playing
catchup with capabilities that DWB had in 1979. We'll discuss these issues in more detail in Chapter
[16 (Documentation)

The design themes that gave DWB so much power should by now be familar ones; all the tools share a
common text-stream representation of documents, and the formatting system is broken up into
independent components that can be debugged and improved separately. The pipeline architecture
supports plugging in new, experimental preprocessors and postprocessors without disturbing old ones.
It is modular anextensible.



The architecture of DWB as a whole teaches us some things about how to fit multiple specialist
minilanguages into a cooperating system. Indeed, the DWB tools were an early exemplar of the power
of pipes, filtering and minilanguages that influenced a lot of later Unix design by example. The design
of the individual preprocessors has more lessons to teach about what effective minilanguage designs
look like.

One of these lessons is negative. Sometimes users writing descriptions in the minilanguages do
unclean things with low-level troff markup inserted by hand. This can produce interactions and bugs
that are hard to diagnose, because the generated troff from the whole pipeline is not visible — and
would not be readable if it were. This is analogous to the sorts of bugs that happen in code that mixes
C with snippets of in-line assembler. It might have been better to separate the language layers more
completely, if that were possible. Minilanguage designers should take ribts. of

All the preprocessor languages (though not troff itself) have relatively clean, shell-like syntaxes that
follow many of the conventions we described in Chdpi@extuality]for the design of data-file

formats. There are a few embarrassing exceptions; notably, tbl(1) defaults to using a tab as a field
separator between table columns, replicating an infamous botch in the design of make(1) and causing
annoying bugs when editors or other tools invisibly change the compositidrntespace.

While troff itself is a specialized imperative language, one theme that runs through at least three of the
little DWB languages is declarative semantics: doing layout from constraints. This is an idea that
shows up in modern GUI toolkits as well — that, instead of giving pixel coordinates for graphical
objects, what you really want to do is declare spatial relationships among them (“widget A is above
widget B, which is to the left of widget C”) and have your software compute a best-fit layout for A, B,
and C based on thosenstraints.

The pic(1) program uses this approach to lay out elements for diagrams. The language taxonomy
diagram at the beginning of this chapter was produced with the PIC source [Etgle@8.2B9 run
through pic2graph, one of our case studies in Chiggfdultiprogramming)

Figure 8.2. Taxonomy of languages — the Pl€ource

# Minilanguage taxonomy

#

# Base ellipses

define smallellipse {ellipse width 3.0 height 1.5}

D: smallellipse()

line from D.n to D.s dashed

M: ellipse width 3.0 height 1.8 with .w at D.e - (0.6, 0)
line from M.n to M.s dashed

I: smallellipse() with .w at M.e - (0.6, 0)

#

# Captions

box invis " "Data files" at D.s

box invis " "Minilanguages" at M.s

box invis " "Interpreters" at I.s

#

# Heads

arrow from D.w + (0.4, 0.8) to D.e + (-0.4, 0.8)
box invis "flat to structured" " at last arrow.c
arrow from M.w + (0.4, 1.0) to M.e + (-0.4, 1.0)
box invis "declarative to imperative" " at last arrow.c
arrow from L.w + (0.4, 0.8) to l.e + (-0.4, 0.8)

box invis "less to more general" " at last arrow.c
#

# The arrow of loopiness



arrow from D.w + (0, 1.2) to l.e + (0, 1.2)
box invis "increasing loopiness" " at last arrow.c
#
# Flat data files
box invis ".newsrc" at 0.5 between D.c and D.w
# Structured data files
box invis "SNG" at 0.5 between D.c and M.w
# Datafile/minilanguage borderline cases
box invis "Glade" at 0.5 between M.w and D.e
# Declarative minilanguages
box invis "m4" "Yacc" "Lex" "make" "XSLT" "pic" "thl" "eqn" \
at 0.5 between M.c and D.e
# Imperative minilanguages
box invis "fetchmail" "awk" "troff" "Postscript" at 0.5 between M.c and l.w
# Minilanguage/interpreter borderline cases
box invis "dc" "bc" at 0.5 between L.w and M.e
# Interpreters
box invis "Emacs Lisp" "JavaScript" at 0.25 between M.e and l.e
box invis "sh" "tcl" at 0.55 between M.e and |.e
box invis "Perl" "Python" "Java" at 0.8 between M.e and |.e

This is a very typical Unix minilanguage design, and as such has some points of interest even on the
purely syntactic level. Notice how much it looks like a shell program — # leads comments, and the
syntax is obviously token-oriented with the simplest possible convention for strings. The designer of
pic(1) knew that Unix programmers expect minilanguage syntaxes to look like this unless there is a
strong and specific reason they should not. The Rule of Least Surprise is in full ogezetion

It probably doesn’t take a lot of effort to discern that the first line of code is a macro definition; the
later references temallellipse()encapsulate a repeated design element of the diagram. Nor will it take
much scrutiny to deduce thadx invis declares a box with invisible borders, actually just a frame for
text to be stacked inside. The arrow command is eqahihous.

With these as clues and one eye on the actual diagram, the meaning of the remaining pieces of the
syntax (references like M.s and constructions lilstarrow or at 0.25 between M.e andle or the
addition of vector offsets to a location) should become rapidly apparent. As with Glade and m4, an
example like this one can teach a good bit of the language without any reference to a manual (a
compactness property troff(1) markup, unfortunately, dotkave).

The example of pic(1) reflects a very common design theme in minilanguages, which we also saw
reflected in Glade — the use of a minilanguage interpreter to encapsulate some form of
constraint-based reasoning and turn it into actions. We could actually choose to view pic(1) as an
imperative language rather than a declarative one; it has elements of both, and the dispute would
quickly growtheological.

The combination of macros with constraint-based layout gives pic(1) the ability to express the
structure of diagrams in a way that more modern vector-based markups like SVG cannot. It is
therefore fortunate that one effect of DWB'’s design is to make it relatively easy to keep pic(1) useful
outside of the DWB context. The pic2graph script we used as a case study in Ehapter
[(Multiprogramming)was an ad-hoc way to accomplish this, using the retrofitted Postscript capability
of groff(1) as a half-way step to a modern bitraqmnat.

A cleaner solution is the pic2plot(1) utility distributed with the GNU plotgiilskagewhich

exploited the internal modularity of the GNU pic(1) code. The code was spit into a parsing front end
and a back end that generated troff markup, the two communicating through a layer of drawing
primitives. Because this design obeyed the Rule of Modularity, pic2plot(1) implementors were able to



saw off the GNU pic and reimplement the drawing primitives using a moderm pldatiaugy.

Casestudy: fetchmailrc
SedExample8.3 for a synthetic but legaixample.

Example 8.3. Synthetic example of fetchmailrc

# Poll this site first each cycle.

poll pop.provider.net proto pop3
user "jsmith" with pass "secretl" is "smith" here
user jones with pass "secret2" is "jjones" here keep

# Poll this site second in the cycle, unless Lord Voldemort zaps us first.
poll billywig.hogwarts.com proto imap:
user harry_potter with pass "floo" is harry_potter here

# Poll this site third in the cycle. Password will be fetched from ~/.netrc
poll mailhost.net with proto imap:
user esr is esr here

This run-control file can be viewed as an imperative minilanguage. There is an implied flow of
execution: cycle through the list of poll commands repeatedly (sleeping for a while at the end of each
cycle), and for each site entry collect mail for each associated user in sequence. It is far from being
general-purpose; all it can do is sequence the progam’s pod#imayior.

As with pic(1), one could choose to view this minilanguage as either declarations or a very weak
imperative language, and argue endlessly over the distinction. On the one hand, it has neither
conditionals nor recursion nor loops; in fact, it has no explicit control structures at all. On the other
hand, it does describe actions rather than just relationships, which distinguishes it from a purely
declarative syntax like Glade’s Gldescriptions.

Run-control minilanguages for complex programs often straddle this border. We’re making a point of
this fact because not having explicit control structures in an imperative minilanguage can be a
tremendous simplification if the problem domain lets you get awayitwith

In chapte[@ (Generatiorjwe’ll see how data-driven programming helps provide an elegant solution to
the problem of editing fetchmail run-control files througB@l.

Casestudy: awk

The awk minilanguage is an old-school Unix tool, formerly much used in shellscripts. Like m4, it's
intended for writing small but expressive programs to transform textual input into textual output.
Versions ship with all Unixes, several in open source; the comméindawk at your Unix shell
prompt is quite likely to take you to on-lide@cumentation.

Programs in awk consist of pattern/action pairs. Each pattemedgikar expressiona concept we'll

describe in detail in Chaptfer{Generatior])When an awk program is run, it steps through each line of
the input file. Each line is checked against every pattern/action pair in order. If the pattern matches the
line, the associated actiongerformed.



Each action is code in a language resembling a subset of C, with variables and conditionals and loops
and an ontology of types including integers, strings, and (unlikboGynarieq*y .

The action language is Turing-complete, and can read and write files. In some versions it can open and
use network sockets. But awk has primarily seen use as a report generator, especially for interpreting
and reducing tabular data. It is seldom used standalone, but rather is normally embedded in scripts.
There is an example awk program in[dase study on HTMReneratiofincluded in Chaptd®]

[[Generatior])

This case study is included to point out that itasa model for emulation; in fact since 1990 it has
largely fallen out of use. It has been superseded by new-school sciapiugges— notablyPerl,

which was explicitly designed to be an awk-killer. The reasons are worthy of examination, as they
constitute a bit of a cautionary tale for minilangudgsigners.

The awk language was originally designed to be a small, expressive special-purpose language for
report generation. Unfortunately, it turns out to have been designed at a bad spot on the
complexity-vs.-power curve. The action languageds-compactand as rich as a general-purpose
scripting langage, but the pattern-driven framework it sits inside keeps it from being generally
applicable. And the new-school scripting languages can do anything awk can; their equivalent
programs are just as readable, if not nswre

For a few years after the release of Perl in 1987, awk remained competitive simply because it had a
smaller, faster implementation. But as the cost of compute cycles and memory dropped, the economic
reasons for favoring a special-purpose language that was relatively thrifty with both lost their force.
Programmers increasingly chose to do awklike things with Perl or (later) Python, rather than keep two
different scriptinganguagesn theirhead§"j . By the year 2000 awk had become little more than a
memory of old-school Unikackersand not a particularly nostalgime.

Falling costs have changed the tradeoffs in minilanguage design. Restricting your design’s capabilities
in order to buycompactnesmay still be a good idea, but doing so to economize on machine resources

is a bad one. Machine resources get cheaper over time, but space in programmers’ heads only gets
more expensive. Modern minilanguages can either be general but non-compact, or specialized but very
compact;specialized but non-compact simply worttimpete.

Casestudy: Postscript

Postscript is a minilangage specialized for describing typeset text and graphics to imaging devices. It

is an import into Unix, having been originally designed at the legendary XEROX Palo Alto Research
Center along with the earliest laser printers. For years after its first commercial release in 1984, it was
available only as a proprietary product from Adobe, Inc., and was primarily associated with Apple
computers. It was cloned under license terms very close to open-source in 1988, and has since become
the de-facto standard for printer control under Unix. A fully open-source version is shipped with most
most modern Unixed . A good technical introduction to Postscript is alsailabld® .

Postcript bears some functional resemblance to troff markup; both are intended to control printers and
other imaging devices, and both are normally generated by programs or macro packages rather than
being hand-written by humans. But where troff requests are a jumped-up set of format-control codes
with some language features tacked on as an afterthought, Postscript was designed from the ground up
as a language and is far more expressivepamebrful.



Postscript is explicitly Turing-complete, supporting conditionals and loops and recursion and named
procedures. The ontology of types includes integers, reals, strings, and arrays (each element of an
array may be of any type) but no equivalent of structures. Technically, Postscript is a stack-based
language; arguments of Postcript’s primitive procedures (operators) are normally popped off a
push-down stack of arguments and the result(s) are pushed badk onto

There are about 40 operators. The one that does most of the work is show, which draws a string onto
the page. Others are used to set the current font, change the gray level or color, draw lines or arcs or
Bezier curves, fill closed regions, set clipping regions, etc. A Postcript interpreter is supposed to be
able to interpret these commands into bitmaps to be thrown on a display ongutiom.

Other Postcript operators implement arithmetic, control structures, and procedures. These allow
repetitive or stereotyped images (such as text, which is composed of repeated letterform) to be
expressed as programs that combine images. Part of the utility of Postcript comes from the fact that
Postcript programs to print an image are much less bulky than the bitmaps they render to, and travel
more quickly over a network cable or setiaé.

Historically. Postscript’'s stack-based interpretation resembles a language called FORTH, originally
designed to control telescope motors in real time, that was briefly popular in the 1980s. Stack-based
languages are famous for supporting extremely tight, economical coding and infamous for being
difficult to read. Postscript shares bathits.

Postscript is often implemented as firmware built into a printer; selling this firmware is how Adobe
makes most of its money. Ghostscript can translate Postscript to various graphics formats and (weaker)
printer-control languages. Most other software treats Postscript as a final output format, meant to be
handed to a Postcript-capable imaging device but not ediegkballed.

Postcript (either in the original or the trivial varid@DF,with a bounding box declared around it so it
can be embedded in other graphics) is a very well-designed example of a special-purpose control
language and deserves careful study as a model.

Casestudy: bc anddc

We first examined bc(1) and dc(1) in ChajgéMultiprogramming)as a case study in shellouts. They
are examples of domain-specific minilanguages of the impeitstree

The domain of these two languages is unlimited-precision arithmetic. Other programs could use them
to do such calculations without having to worry about the special techniques needed to do those
calculations.

Like SNG and Glade, one of the strengths of both of these languages is their simplicity. Once you
know that dc(1) is a reverse-Polish-notation calculator and bc(1) an algebraic-notation calculator, very
little about interactive use of either of these languages is going to be novel. We'll return to the
importance of the Rule of Least Surprise in interfaces in CHaptddsernterfaces)

These minilanguages have both conditionals and loops; they are Turing-complete, but have a very
restricted ontology of types including only unlimited-precision integers and strings. This puts them in

the borderland between interpretive minilanguages and full scriptiggiagesThe programming

features have been designed not to intrude on the common use as a calculator; indeed, most dc/bc users
are probably unaware tdiem.



Normally, dc/bc are used conversationally, but their capacity to support libraries of user-defined
procedures gives them an additional kind of utility — programmability. This is actually the most
important advantage of imperative minilanguages, one which we observed in the case study of the
DWB tools to be very powerful whether or not a program’s normal mode is conversational; you can
use them to write high-level programs that embody task-spéetifitigence.

Because the interface of dc/bc is so simple (send a line containing an expression, get back a line
containing a value) other programs and scripts can easily get access to all these capabilities by calling
these programs as slapmcesses.

Casestudy: EmacsLisp

Rather than merely being run as a slave process to accomplish specific tasks, a special-purpose
interpreted language can become the core of an entire architecture. Troff requests were an early
example; today, the Emacs editor is one of the best-known and most powerful modern ones. It's built
around a dialect dfisp with primitives for both describing actions on editing buffers and controlling
slaveprocesses.

The fact that Emacs is built around a powerful language for describing editing actions or front ends for
other programs means that it can be used for many other things besides ordinary editing. We'll
examine the applications of Emacs’s task-specific intelligence for day-to-day program development
(compilation, debugging, version control) in Chafit8(Tools] Emacs ‘modes’ are user-defined

libraries — programs written in Emacs Lisp that specialize the editor for a particular job — usually,

but not necessarily, one relatecettiting.

Thus there are specialized modes that know the syntax of a large number of programming languages,
and of markup languages lilgGML, XML and HTML. But many people also use Emacs modes to

send and receive email (these use Unix system mail utilities as slaves) or USENET news. Emacs can
browse the web, or front-end for various chat programs. There is also a calendaring package, Emacs’s
own calculator program, and even a fairly wide selection of games written as Emacs Lisp modes
(including a descendant of the famous ELIZA program that simulates a Rogerian psydfffirist

Casestudy: JavaScript

JavaScript is an open-source language designed to be embe@degrams. Though it is also

embedded in web servers, its original and best-known manifestation is client-side JavaScript, which
allows you to embed executable code in web pages to be run by any JavaScript-capable browser. That
is the version we will survelyere.

JavaScript is a fully Turing-complete interpretive language with integers, real numbers, booleans,
strings, and lightweight dictionary-based objects resembling thd3gtlodn.Values are typed, but

variables may hold any type; conversions between types are automatic in many contexts. Syntactically
it resembleglavawith some influence frorRerl,and features Perl-like regulexpressions.

Despite all these features, client-side JavaScript is not quite a general-purpose language. Its
capabilities are severely restricted in order to prevent attacks on the browser user through web pages
containing JavaScript code. It can accept input from the user and generate or modify web pages, but it
cannot directly alter the contents of disk files and cannot open its own newvoréctions.



Over time, the JavaScript language has become more general and less bound to its client-side
environment. This is something that can be expected to happen to any successful specialized language
as its possibilities unfold in the minds of developers and users. Client JavaScript now interacts with its
environment by reading and writing values in a single special object called the browser DOM
(Document Object Model). The language still has some legacy APIs to the browser that don’t go
through the DOM, but these are deprecated, not present in the ECMA-262 standard for JavaScript, and
may not be supported in futuversions.

The standard reference for JavaScrigtagaScript: The Definitiv&uide]FlanaganJavaScript]

Source code is downloadalf . JavaScript makes an interesting study for two reasons. First, it's
about as close to being a general-purpose language as one can get without actually being there.
Secondly, the binding between client-side JavaScript and its browser environment via a single DOM
object is well designed, and could serve as a model for other embsddatgns.

Y For non-Unix programmers, an X toolkit is a graphics library that supplies GUI widgets (like

labels, buttons, and pull-down menus ) to the the programs that link to it. Under most other graphical
operating systems, the OS supplies one toolkit that everyone uses. Unix and X support multiple
tookits; this is part of the separation of policy from mechanism that we called out as a design goal of X

in Chaptefl (Philosophy)) GTK and Qt are the two most popular open-sourteokits.

¥ Whether or not “macro expansion” should be spelled “macroexpansion” is a matter for some
dispute. The latter is found mainly among Ljspgrammers.

B4 It is not clear that XSLT could be any simpler and still do its job, however, so we cannot
characterize it as a baesign.

[?¥ [XSL Concepts and Practiddké

B9 It is also quite traditional for Unix books that describe pic(1) to include their own illustrations as
codingexamples.

9 For those who have never programmed in a modern scripting language, a dictionary is a lookup
table of key-to-value associations, often implemented via a hash@gimegrammers spend a lot of
their coding time implementing dictionaries in various elaboraiygs.

4 The author, who was at one time an awk wizard, had to be reminded by someone else that the
language was applicable to the HTML-generation problem where this book’s only awk example
occurs.

¥4 There is §Ghostcript Projecsite

™4 [A First Guide ToPostscrigt

™4 One of the silliest things you can do with a modern Unix machine is run Emacs’s Eliza mode
against random quotes from Zippy the Pinhé&d psychoanalyze-pinheagtype control-G when
you've hadenough.

"9 Open-source JavaScript implementations in C and Jajavaiiabl¢


http://nwalsh.com/docs/tutorials/xsl/xsl/slides.html
http://www.cs.wisc.edu/~ghost/
http://www.cs.indiana.edu/docproject/programming/postscript/postscript.html
http://www.mozilla.org/js/

Designingminilanguages

When is designing a minilanguage appropriate? We’ve observed that minilanguages offer a way to
push problem specifications to a higher level, and seen how this operates in several case studies. The
flip side of this observation is that a minilanguage is likely to be a good approach whenever the
domain primitives in your application area are simple and stereotyped, but the ways in which users are
likely to want to apply them are fluid andrying.

For some related ideas, find a description ofAhiernate Hard And Softayer$andScripted

[Componenisiesignpatterns.

An interesting survey of design styles and techniques in minilanguaygetaisle Design Patterns for

Domain-Specifit. anguage

Choosingthe right complexity level

The first important thing to bear in mind when designing a minilanguage is, as usual, to keep it as
simple as possible. The taxonomy diagram we used to organize the case studies implies a hierarchy of
complexity; you want to keep your design as far towards the left-hand edge as possible. If you can get
away with designing a structured data file rather than a minilanguage that is going to modify external
data when it's interpreted, by all meanssto

One very pragmatic reason to stick with structured data rather than a minilanguage is that in a
networked world, embedded minilanguage facilities are subject to abuses that can be inconvenient or
even dangerousavaScripis a prime example in the ‘inconvenient’ category; its designers didn’t
anticipate that it would be used for pop-up advertisements so obnoxious as to create a demand for
browser features that suppress JavaSuriptpretation.

Microsoft Word macro viruses show how this sort of thing can become actively dangerous, a security
hole that costs billions of dollars in downtime and lost productivity annually. It is instructive to note
that despite the existence of at least twenty million Unix userkiwide[*§ there has never been any

Unix equivalent of Windows’s frequent macro-virus outbreaks. There are a number of reasons for this,
including the fundamentally better security design of Unix; but at least one is the fact that Unix mail
agents daot default to executing live content in any document that thevieses.

If there is any way that your application’s users might end up running programs from untrusted
sources, risky features of your application minilanguage might end up having to be suppressed.
Laguages like Java and JavaScript are explisdtydboxed— that is, they have limited access to their
environment not merely to simplify their design but to try to prevent potentially destructive operations
by buggy or maliciousode.

On the other hand, a lot of bad designs have been botched by designers who failed to face up to the
fact that they really needed a minilanguage rather than a data file format. Too often, language-like
features get pasted on as an afterthought. The two most common symptoms of this problem are wealk,
ad-hoc control structures and poor or nonexistant facilities for declamacgdures.

It's risky to design minilanguages that are only accidentally Turing-complete. If you do this the odds
are good that, sometime in the future, some clever fellow is going to think he needs to press your
language into doing loops and conditionals for him. Because these are only available in an obfuscated
way, he’ll produce obfuscated code. The results may be serviceable in the short term, but are likely to
be a nightmare for those who come alftien.


http://www.c2.com/cgi/wiki?AlternateHardAndSoftLayers
http://www.doc.ic.ac.uk/~np2/patterns/scripting/scripting.html
http://www.doc.ic.ac.uk/~np2/patterns/scripting/scripting.html

Minilanguage design is both powerful and esthetically rewarding, but it's also full of traps like this.
There are kinds of design in which it is appropriate to take the bottom-up approach of pasting together
a bunch of low-level services and worrying about the organization of them after you have explored the
problem domain for a while. One of the virtues of minilanguages is that they can help you get a good
design out of bottom-up programming by allowing you to defer some top-down decisions into the
control flow of programs in your minilanguage. But if you take a bottom-up approach to the
minilanguage desigitself, you are likely to end up with an ugly syntax reflecting a weak language and
a poorly-thought-ouimplementation.

There is no substitute here for good taste and engineering judgment. If you're going to design a
minilanguage, don’t do it halfway. Declarative minilanguages should have a clear, consistent
language-like syntax designed to be readable by humans. Imperative ones should add a full range of
control structures adapted from language models you can expect your users to be familiar with. Think
about the languages a language; ask yourself esthetic questions like “Will this be comfortable to
program in?” and even “Will it be pleasant to look at?”. Here, as elsewhere in software design, David
Gelernter's maxim is apt: beauty is the ultimate defense agaimgilexity.

Extendedand embeddedanguages

One fundamentally important question is whether you can implement your minilanguage by extending
or embedding an existing scriptitapguageThis is often the right way to go for an imperative
minilanguage, but much less appropriate for a declaratiee

Sometimes it's possible to write your imperative language simply by coding service functions in an
interpretive language, which we'll call the ‘host’ language for purposes of this discussion. Your
minilanguage programs are then just scripts that load your service library and use the host language’s
control structures and other facilities as a framework. Every facility the host language supplies is one
you don’t have tavrite.

This is the easiest way to write a minilanguage. Old-sdhispprogrammergincluding your humble

author) love this technique and use it heavily. It underlies the design of the Emacs editor, and has been
rediscovered in the new-school scripting languagesTidbe, Python,andPerl. There are drawbacks

to it, however.

Your host language may be unable to interface to a code library that you need. Or, internally, its
ontology of data types may be inadequate for the kind of computation you need to do. Or, after
measuring the performance of a prototype, you discover that it's too slow. When any of these things
happens, your solution is usually going to involve coding {or C++) and integrating the results into
your minilanguage.

The option of extending a scriptit@nguagewitiC code, or of embedding a scripting language in a C
program, relies on the existence of scripting languages designed for it. You extend a scripting
language by telling it to dynamically load a C library or module in such a way that the C entry points
become visible as functions in the extended language. You embed a scripting language in a C program
by sending commands to an instance of the interpreter and receiving the results back as@alues in

Both techniques also rely on the ability to move data between the type ontology of C and the type
ontology of your scripting language. Some scripting languages are designed from the ground up to
support this. One such T&l, which we’ll cover in Chaptdt2 (Language$)Another is Guile, an
open-source dialect of thasp variant called Scheme that is shipped as a library and specifically
designed to be embeddedGrprograms.



It is possible (though in 2003 still rather painful and difficult) to extend or efAbddt is very easy

to extendPythonand only slightly more difficult to embed it; C extension is especially heavily used in
the Python worldJavahas an interface to call ‘native methods’ in C, though the practice is
discouraged because it tends to breakability.

There are lots of bad reasons to not piggyback your imperative minilanguage on an existing scripting
languageOne of the few good ones is if you actually want to implement your own custom grammar
for error checking. If that’s the case, then see the advice about Yacc abdlbex

When you need a custongrammar

For declarative minilanguages, one major question is whether or not you should use XML as a base
syntax and specify your grammar as an XML document type. This may well be the right thing for
elaborately structured declarative minilanguages, but the same caveats we noted if6¢hapter
[(Textuality] about the design of datafile formats apply — XML might be overkill. If you don’t use

XML, follow the Rule of Least Surprise by supporting the Unix conventions we described for datafiles
(simple token-oriented syntax, supporti@dpackslash conventionstc.).

If you do need a custom grammar, Yacc and Lex (or their local equivalent in the language you're
using) should probably be your best friends, unless the grammar of your language is so trivial that
hand-coding a recursive-descent parser is trivial. Even then, Yacc may give you better error recovery.
Sed9 (Generatiorjfor a look at the Yacc- and Lex-derived tools available in different implementation
languages.

Even if you decide you must implement your own syntax, consider what mileage you can get from
reusing existing tools. If you need a macro facility, consider whether preprocessing with m4(1) might
be the right answer — but consider the cautions in the next sécsion

Macros — beware!

Macro expansion facilities were a favored tactic for language designers in early Uiiartigeage

has one, of course, and we have seen them show up in some of the more complex special-purpose
minilanguage like pic(1). The m4 preprocessor provides a generic tool for implementing
macro-expanding@reprocessors.

Macro expansion is easy to specify and implement, and you can do a lot of cute tricks with it. Those
early designers were probably influenced by experience with assemblers, in which macro facilities
were often the only device available for structuginggrams.

The strength of macro expansion is that it knows nothing about the underlying syntax of the base
language, and can be used to extend that syntax. Unfortunately, this power is very easily abused to
produce code that is opaque, surprising, and a fertile source of hard-to-charbatgsize

In C, the classic example of this sort of problem is a macro subisas

#define max(x, y) X>y?x:y

There are at least two problems with this macro. One is that it can produce surprising results if either

of the arguments is an expression including an operator of lower precedence than > or ?:. Consider the
expression max(a = b, ++c). If the programmer has forgotten that max is a macro, he/she will be
expecting the assignment a = b and the preincrement operation on ¢ to be executed before the resulting
values are passed as argumentadd.



But that's not what will happen. Instead, the preprocessor will expand this expressionto a=b > ++c ?
a =b: ++c, which the C compiler’s precedence rules make it interpretasa= (b > ++c ? a=b : ++c).
The effect will be to assign &

This sort of bad interaction can be headed off by coding the macro definitiordefensively.
#define max(x, y) () >)?2 (X : ()

With this definition, the expansion would be ((a = b) > (++c) ? (a = b) : (++c)). This solves one
problem — but notice that ¢ will be incremented twice! There are subtler versions of this trap, such as
passing the macro a function-call with seféects.

In general, interactions between macros and expressions with side effects can lead to unfortunate
results that are hard to diagnose. C’'s macro processor is a deliberately lightweight and simple one;
more powerful ones can actually get you in wdreable.

A minor problem, compared to this one, is that macro expansion tends to screw up error diagnostics.
The base language processor generates its error reports relative to the macro expanded text, not the
original the programmer is looking at. If the relationship between the two has been obfuscated by
macro expansion, the emitted diagnostic can be very difficult to associate with the actual location of
theerror.

This is especially a problem with preprocessors and macros that can have multiline expansions,
conditionally include or exclude text, or otherwise change line numbers in the expanded text.

Macro expansion stages that are built into a language can do their own compensation, fiddling line
numbers to refer back to the pre-expanded text. The macro facility in pic(1) arranges this, for example.
This problem is more difficult to solve when the macro expansion is donerep@cessor.

The Cpreprocessoraddresgibss problem by emitting #line directives whenever it does an inclusion
or multiline expension. The C compiler is expected to interpret these and adjust the line numbers in its
error reports accordingly. Unfortunately, m4 has no sactity.

These are reasons to use macro expansion with extreme caution. One of of the long-term lessons of the
Unix experience is that macros tend to create more problems than they solve. Modern language and
minilanguage designs have moved away ftbem.

Languageor application protocol?

Another important question you need to ask is whether your minilanguage interpreter will be called
interactively by other programs, as a slave process. If so, your design should probably look less like a
conversational language for human interaction and more like the kind of application protocols we

looked at in Chaptés (Textualit

The main difference is how carefully marked the boundaries of transactions are. Human beings are
good at spotting where conversational output from a CLI ends, and where the prompt for the next input
is. They can use context to tell what's significant and what should be ignored. Computer programs
have much more trouble with this. Without either unambiguous end markers on output or knowing the
length of the output in advance, they can't tell when to stagding.



Programs in which master processes are trying to do interactive things with slaved minilanguages that
are not carefully designed around this problem are prone to deadlock as the master and slave fall out of
synchronization (a problem we first noted in Chajgt@viultiprogramming).

There are workarounds for driving minilanguages that are not so carefully designed. The prototype for
most of them is th&clexpectpackage. This package is designed to assist conversation with CLIs. It's
built around the following operation: read from slave until either a given regular-expression pattern is
matched or a specified timeout elapses. With this (and, of course, a send-to-slave operation) it's often
possible to construct master programs to do reliable dialogues with slave processes even when the
latter have not been tailored for tiae.

Workalikes of expect in other languages are available; a web search for the name of your favorite
language with the added keywords “Tcl expect” is quite likely to turn up something useful. As a
minilanguage designer, however, it is unwise to assume that all your users will be expect gurus. Even
if they are, this is an extra glue layer and a place for things wraag.

Be aware of this issue when designing your minilanguage. It may be a good idea to add an option that
changes its conversational behavior to make it respond more like an application protocol, with

unambiguous end-of-output delimiters and an analogpgtetstuffing

9 20M is a conservative estimate based on early 2003 figures from the Linux Counter and
elsewhere.
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Pushing The Specification Level Upwards
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The programmer at wit's end ... can often do best by disentangling himself from his code, rearing
back, and contemplating his data. Representation is the essgmogEmming.

--Fred Brooks,The MythicalMan-Month chapter9.

In Chapte[L (Philosophywe observed that human beings are better at visualizing data than they are at
reasoning about control flow. We recapitulate: to see this, compare the expressiveness and explanatory
power of a diagram of a fifty-node pointer tree with a flowchart of a fifty-line program. Or (better) of a
Cinitializer expressing a conversion table with an equivalent switch statement. The difference in
transparencynd clarity isdramatic.

Data is more tractable than program logic — and that’s true whether the data is an ordinary table, a
declarative markup language, a templating system, or a set of macros that will expand to program
logic. It's good practice to move as much of the complexity in your design as possible away from
procedural code and intiata.

These insights ground in theory a set of practices that have always been an important part of the Unix
programmer’s toolkit — very high-level languages, data-driven programming, code generators, and
domain-specific minilanguages. What unifies these is that they are are all ways of lifting the

generation of code up some levels, so that specifications can be smaller. We've previously noted that
defect densities tend to be nearly constant across programming languages; all these practices mean that
whatever malign forces generate our bugs will get fewer lines to ahew

In Chapte[8 (Minilanguagegwe discussed the uses of domain-specific minilanguages. In Clhdpter
[[Canguage$jve’ll make the argument for very-high-level languagksthis chapter we'll survey

data-driven programming and code generation. As with minilanguages, these methods can enable you
to drastically cut the line count of your programs, and correspondingly lower debugging time and
maintenanceosts.




Data-driven programming

Data-drivenprogrammingis a style in which one clearly distinguishes code from the data structures
on which it acts, and designs both so that changes to the program can be made by editing not the code
but the datatructure.

Data-driven programming is sometimes confused with objgentation,another style in which data
organization is supposed to be central. There are at least two differences. One is that in data-driven
programming, the data is not merely the state of some object, but actually defines the control flow of
the program. Where the primary conceri©@ is encapsulation, the primary concern in data-driven
programming is writing as little fixed code as possible. Unix has a stronger tradition of data-driven
programming than dDO.

Data-driven programming is also sometimes confused with writing state machines. It is in fact possible
to express the logic of a state machine as a table or data structure, but hand-coded state machines are
usually rigid blocks of code that are far harder to modify thiile.

At the upper end of its complexity scale, data-driven programming merges into writing interpreters for
p-code or simple minilanguages of the kind we surveyed in Chatéinilanguageg)At other

edges, it merges into code generation and state-machine programming. The distinctions are not
actually that important; the important part is moving program logic away from hardwired control
structures and intdata.

Regular expressions

A kind of specification that turns up repeatedly in tools for data-driven programming under Unix is the
regular expressior(‘regexp’ for short). This is a brief exposition for readers from outside the Unix
world who are unfamiliar with the topic. This introduction skates over some details like POSIX
extensions and internationalization features; for a more complete treatmévigssegng Regular

Expression

Regular expressions describe patterns that may either match or fail to match against strings. The
simplest regular-expression tool is grep(1), a filter which passes through to its output every line in its
input matching a specified regexp. Here are some regexpples:

Table 9.1. Regular-expressiomxamples



Regexp: Matches:
"a.b" a followed by any character followed by
"a\.b" a followed by a literal period followed k.
"ac?b" a followed by at most one c followed by b; thus, "ab" or "acb" but not "ac" or "adf
I a followed by any number of instances of ¢, followed by b; thus, "ab" or "acbh"” or
ac*b " " A "
acccb" but not "ac" otadb".
" " a followed by one or more instances of c, followed by b; thus, "acb" or "accb" bu
ac+b e
ab" or "ac" or'adb".
" . | afollowed by any of the characters x or y or z, followed by b; thus, "axb" or "ayb
alxyz]b" | . _ . gy ot "
azb" but not "ab" ofaab".
"a[x0-9]b" a followed by either x or characters in the range 0-9, followed by b; thus, "axb" of
"a0b" or "a4b" but not "ab" dlaab".
" . | a followed by any character that is not x or y or z, followed by b; thus, "adb" or "g
a[AXyZ]b n n n n n
but not "axb" or "ayb" ofazb".
"a["x0-9]b" a followed by any character that is not x or in the range 0-9, followed by b; thus,
or "aeb" but not "axb" or "aOb" da4b".
"Na" a at the beginning of a string; thus, "acb" or "accb" but not "bctijad”.
"a$" a at the end of a string; thus, "bca" or "ba" but not "battaln".

There are a number of minor variants of regesfation:

1. globexpressionsThis is the limited wildcard conventions used by Unix shells for filename
matching. There are only three wildcards: *, which matches any sequence of characters (like .* in
the other variants); ?, which matches any single character (like . in the other variants); and [...]
which matches a character class just as in the other variants. This is historically the oldest form of

regexp.

2. grep regularexpressionsThis is the notation accepted by the original grep(1) utility for
extracting lines matching a given regexp from a file. The line editor ed(1), the stream editor
sed(1), and the report generator awk(1) also use these. Most people think of this as the basic or
‘vanilla’ flavor of regexp.

not

or

eb"

adb"

3. egrep regularxpressionsThis is the notation accepted by the extended grep utility egrep(1) for
extracting lines matching a given regexp from a file. Regular expressions in Lex and the Emacs
editor are very close to the egrep flavor.

4. Perl regularexpressionsThe notation accepted IBRerlandPythonregexp functions. Quite a bit
more powerful than the egrep flavor, with one incompatibility; the syntax for pattern-grouping
delimiters changes from \(\) {®.

Now that we've looked at some motivating examples, here is a list of the standard regular-expression
wildcard characters. Note: we're not including the glob variant in this table, so a value of “All” implies
only all three of the grep, egrep/Emacs, and Perl/Pythdants.



Table 9.2. Introduction to regular-expressionoperations

nis

Wildcard: Supportedin: Matches:
Escape next character. Toggles whether following punctuatig
\ All treated as a wildcard or not. Following letters or digits are
interpreted in various different ways depebnding orptiogram.
All Any character.
A All Beginning ofline
$ All End ofline
[...] All Any of the characters between thrackets
.. All Any of charactergxcepthosebetween thérackets.
* All Accept any number of repetitions of the previelement.
? Iig(]errilgﬁhmoics’ Accept zero or one instances of the previglesnent.
+ Iejgrrle/p;/;hmoancs, Accept one or more instances of the previglesnent.
n} egrep, EerI/Python; Accept exactly n repetitions of the_ previous element. Not
as \{n\} inEmacs | supported by some older regeqpgines.
n} egrep, EerI/Python; Accept n or more repetitions of th_e previous element. Not
as \{n\} in Emacs | supported by some older regexpgines.
(m.n} egrep, Perl/Python;| Accept at least m and at most n repetitions of the previous

as \{n\} in Emacs

element. Not supported by some older regaxgines.

egrep, Perl/Python;
as \| inEmacs

Accept the element to the left or the element to the right. Thi
usually used with some form of pattern-groupdmiters.

5 IS

(..

Perl/Python; as
\(...\) in older
versions.

Treat this pattern as a group (in newer regexp engines like P
and Pythons). Older regexp engines such as those in Emacs
grep requird(...\).

erl
and

Some specific tools have extra wildcards not covered here, but these will suffice to interpret most

regexps.

CaseStudy: ascii

The author maintains a program called ascii, a very simple little utility that tries to interpret its
command-line arguments as names of ASCII characters and report all the equivalent names. Code and
documentation for the tool are available from[phajectpagé Here is an illustrativecreenshot:

esr@snark:~/WWW/writings/taoup$ ascii 10
ASCII 1/0 is decimal 016, hex 10, octal 020, bits 00010000: called “P, DLE
Official name: Data Link Escape

ASCII 0/10 is decimal 010, hex 0a, octal 012, bits 00001010: called AJ, LF, NL


http://www.tuxedo.org/~esr/ascii

Official name: Line Feed
C escape: '\n’
Other names: Newline

ASCII 0/8 is decimal 008, hex 08, octal 010, bits 00001000: called "H, BS
Official name: Backspace

C escape: '\b’

Other names:

ASCII 0/2 is decimal 002, hex 02, octal 002, bits 00000010: called "B, STX
Official name: Start of Text

One indication that this program was a good idea is the fact that it has an unexpected use — as a quick
CLI aid to converting between decimal, hex, octal, and binary representatioytse ef

The main logic of this program could have been coded as a 256-branch case statement. This would,
however, have made the code bulky and difficult to maintain. It would also have tangled parts that
change relatively rapidly (like list of slang names for characters) with parts that change slowly or not
at all (like the official names), putting them both in the same legend string and making errors during
editing much more likely to touch data that ought tctable.

Instead, we apply data-driven programming. The reader is invited to verify that all of the character
name strings live in a table structure that is quite a bit larger than any of the functions in the code
(indeed, counted in lines it is larger than @&mgeof the functions in the program). The code merely
navigates the table and does low-level tasks like raamtixersions.

This organization makes it easy to add new character names, change existing ones, or delete old names
by simply editing the table, without disturbing tede.

CaseStudy: metaclass hacking ifetchmailconf

The fetchmailconf(1) dotfile configurator shipped wigichmail(1)containgn instructive example of
advanced data-driven programming in a very high-level, object-oritarigdage.

In October 1997 a series of questions on the fetchmail-friends mailing list made it clear that end-users
were having increasing troubles generating configuration files for fetchmail. The file uses a simple,
classically-Unixy free-format syntax, but can become forbiddingly complicated when a user has POP3
and IMAP accounts at multiple sites. §&@ample9.1jis a somewhat simplified version of the

fetchmail author’s configuratiofile.

Example 9.1. Example of fetchmailrcsyntax

set postmaster "esr"
set daemon 300

poll imap.ccil.org with proto IMAP and options no dns
aka snark.thyrsus.com locke.ccil.org ccil.org
user esr there is esr here options fetchall dropstatus warnings 3600

poll imap.netaxs.com with proto IMAP
user "esr" there is esr here options dropstatus warnings 3600

skip pop.tems.com with proto POP3:
user esr here is ed there options fetchall



The design objective of fetchmailconf was to completely hide the control file syntax behind a
fashionable, ergonomically-correct GUI interface replete with selection buttons, slider bars and fill-out
forms.

The beta design had a problem: it could easily generate configuration files from the user’'s GUI
actions, but could not read and edit existings.

The parser fofetchmail’sconfiguratioriile syntax is rather elaborate. It's actually written in yacc and

lex, the two classic Unix tools for generating language-parsing code in C. In order for fetchmailconf to
be able to edit existing configuration files, it at first appeared that it would be necessary to replicate
that elaborate parser in fetchmailconf's implementation languaggthen.

This tactic seemed doomed. Even leaving aside the amount of duplicative work implied, it is
notoriously hard to be certain that two parsers in two different languages have the same accept
grammar. Keeping them synchronized as the configuration language evolved bid fair to be a
maintenance nightmare. It would have violated the DRY rule we discussed in
wholesale.

This problem stumped the author for a while. The insight that cracked it was that fetchmailconf could
use fetchmail’'s own parser as a filter! The author added a --configdump option to fetchmail that would
parse.fetchmailrc and dump the result to standard output in the format of a Python initializer.

For the file above, the result would look roughly (to save space, some data not

relevant to the example @nitted).

Example 9.2. Python structure dump of a fetchmaitonfiguration

fetchmailrc = {
"poll_interval’:300,
"logfile":None,
"postmaster":"esr",
‘bouncemail: TRUE,
"properties":None,
'invisible”:FALSE,
'syslog’:FALSE,
# List of server entries begins here
'servers’: [
# Entry for site ‘imap.ccil.org’ begins:
{
"pollname":"imap.ccil.org",
"active”: TRUE,
"via":None,
"protocol":"IMAP",
‘port’:0,
‘timeout’:300,
'dns”:FALSE,
"aka":["snark.thyrsus.com", "locke.ccil.org", "ccil.org"],
‘users’: [
{
"remote":"esr",
"password":"Malvern",
'localnames’:["esr"],
'fetchall" TRUE,
'keep’:FALSE,
'flush”:FALSE,
"mda":None,
"limit”:0,
'warnings’:3600,



}

# Entry for site ‘imap.netaxs.com’ begins:
{
"pollname":"imap.netaxs.com"”,
'active: TRUE,
"via":None,
"protocol":"IMAP",
‘port’:0,
'timeout’:300,
'dns’:TRUE,
"aka":None,
‘users’: [
{
"remote":"esr",
"password":"dOwnthere",
'localnames’:["esr"],
'fetchall’:FALSE,
'keep’:FALSE,
flush:FALSE,
"mda":None,
limit’:0,
'warnings’:3600,
}
, ]
}

# Entry for site ‘pop.tems.com’ begins:
{

"pollname":"pop.tems.com”,

'active’:FALSE,

"via":None,

"protocol":"POP3",

‘port’:0,

'timeout’:300,

'dns’:TRUE,

‘uidl":FALSE,

"aka":None,

‘users’: [

{

"remote":"ed",
"password":None,
'localnames’:["esr"],
'fetchall: TRUE,
'keep’:FALSE,
flush”:FALSE,
"mda":None,
limit’:0,
'warnings’:3600,

; ]

The major hurdle had been leapt. The Python interpreter could then evaluate the fetchmail

--configdump output and have the configuration available to fetchmailconf as the value of the variable
‘fetchmail’.



But this wasn't quite the last step in the dance. What was really needed wasn't just for fetchmailconf

to have the existing configuration, but to turn it into a linked tree of live objects. There would be three
kinds of object in this tree; Configuration (the top-level object representing the entire configuration),
Site (representing one of the servers to be polled), and User (representing user data attached to a site).
The example file decribes three site objects, each with one user object attathed to

The three object classes already existed in fetchmailconf. Each had a method that caused it to pop up a
GUI edit panel to modify its instance data. The last remaining problem was to somehow transform the
static data in this Python initializer into liodjects.

The author considered writing a glue layer that would explicitly know about the structure of all three
classes and use that knowledge to grovel through the initializer creating matching objects, but rejected
that idea because new class members were likely to be added over time as the configuration language
grew new features. If the object-creation code were written in the obvious way, it would be fragile and
tend to fall out of synchronization when either the class definitions or the initializer structure dumped
by the --configdump report generator changed. Again, a recipe for ehdigss

The better way would be data-driven programming — code that would analyze the shape and members
of the initializer, query the class definitions themselves about their members, and then
impedance-match the tvaets.

Lispprogrammersgall thisintrospection in object-oriented languages it's callegtaclasdacking

and is generally considered fearsomely esoteric, deep black magic. Most object-oriented languages
don’t support it at all; in those that @i@erlbeing one), it tends to be a complicated and fragile
undertaking. Python’s facilities for metaclass hacking are unusaissible.

SedExample9.3 for the solution code, from near line 1895 of the Ydi3ion:

Example 9.3. copy_instance metaclasede

def copy_instance(toclass, fromdict):
# Initialize a class object of given type from a conformant dictionary.
class_sig = toclass.__dict__.keys(); class_sig.sort()
dict_keys = fromdict.keys(); dict_keys.sort()
common = set_intersection(class_sig, dict_keys)
if typemap’ in class_sig:
class_sig.remove('typemap’)
if tuple(class_sig) != tuple(dict_keys):
print "Conformability error"
# print "Class signature: " + ‘class_sig"
# print "Dictionary keys: " + ‘dict_keys"
print "Not matched in class signature: "+‘set_diff(class_sig, common)‘
print "Not matched in dictionary keys: "+'set_diff(dict_keys, common)‘
sys.exit(1)
else:
for x in dict_keys:
setattr(toclass, x, fromdict[x])

Most of this code is error-checking against the possibility that the class members and --configdump
report generation have drifted out of synchronization. The heart of this function is the last two lines
which sets attributes in the class from corresponding members in the dictionary. They're equivalent to
this:



def copy_instance(toclass, fromdict):
for x in fromdict.keys():
setattr(toclass, x, fromdict[x])

When your code is this simple, it is far more likely to be right for the code that calls
it.

Example 9.4. Calling context forcopy_instance

# The tricky part -- initializing objects from the ‘configuration’ global
# ‘Configuration’ is the top level of the object tree we're going to mung
Configuration = Controls()
copy_instance(Configuration, configuration)
Configuration.servers = [];
for server in configuration['servers’]:
Newsite = Server()
copy_instance(Newsite, server)
Configuration.servers.append(Newsite)
Newsite.users = [];
for user in server['users’]:
Newuser = User()
copy_instance(Newuser, user)
Newsite.users.append(Newuser)

The key point to extract from this code is that it traverses the three levels of the initializer
(configuration/server/user), instantiating the correct objects at each level into lists contained in the next
object up. Because copy_instance is data-driven and completely generic, it can be used on all three
levels for three different objettpes.

This is a new-school sort of example; Python was not even invented until 1990. But it reflects themes
that go back to 1969 in the Unix tradition. If meditating on Unix programming as practiced by his
predecessors had not taught the author constructive laziness — insisting on reuse, and refusing to write
duplicative glue code in accordance with the DRY rule — he might have rushed into coding a parser in
Python. The first key insight that fetchmail itself could be made into fetchmailconf’s configuration

parser might never hav@ppened.

The second insight (that copy_instance could be generic) proceeded from the Unix tradition of looking
assiduously for ways to avoid hand-hacking. But more specifically, Unix programmers are very used

to writing parser specifications to generate parsers for processing language-like markups; from there it
was a short step to believing that the rest of the job could be done by some kind of generic tree-walk of
the configuratiorstructure.

Insights like this can be extraordinarily powerful. The code we have been looking at was written in
about ninety minutes, worked the first time it was run, and has been stable in the years since (the only
time it has ever broken is when it threw an exception in the presence of genuine version skew). It's
less than forty lines and beautifully simple. There is no way that the naive approach of building an
entire second parser could possibly have produced this kind of reliabitibpgractnesRRe-use,
simplification, generalizatiorgrthogonality;this is theZen of Unix inaction.

In chaptefl0 (Configuration) we’ll examine the run-control syntax fetchmailasan example of the
standard shell-like metaformat for run-control files. In chdpBdt.anguages$yve’ll use fetchmailconf
as an example of Python’s strength in rapidly building @®tdrfaces.




Ad-hoc codegeneration

Unix comes equipped with some powerful special-purpose code generators for purposes like building
lexical analyzers (tokenizers) and parsers; we’ll survey these later in the chapter. But there are much

simpler, lighter-weight sorts of code generation we can use to make life easier without having to know
any compiler theory or write (error-prone) procedlogic.

Here are a couple of simple case studies to illustrat@oims:

Casestudy: generating code for a fixed screedisplay

Called without arguments, ascii generates a usage screen that lotkislike

Usage: ascii [-dxohv] [-t] [char-alias...]

-t = one-line output -d = Decimal table -0 = octal table -x = hex table

-h = This help screen -v = version information
Prints all aliases of an ASCII character. Args may be chars, C \-escapes,
English names, *-escapes, ASCIl mnemonics, or numerics in decimal/octal/hex.

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
OOONUL 16 10DLE 3220 48300 6440 @ 8050P 9660' 11270 p
101SOH 1711 DC1 33211 49311 6541 A 8151Q 9761a 11371q
202STX 1812DC2 3422" 50322 6642B 8252R 9862b 11472
303ETX 1913 DC3 3523# 51333 6743C 8353S 9963c 11573s
404 EOT 2014 DC4 3624 % 52344 6844 D 8454 T 10064d 116 74t
505 ENQ 21 15NAK 3725% 53355 6945E 8555U 10165e 117 75u
6 06 ACK 2216 SYN 3826 & 54366 7046 F 8656V 10266 f 118 76 v
707BEL 2317ETB 3927’ 55377 7147 G 8757W 103679 11977 w
808BS 24 18 CAN 4028 ( 56388 7248 H 8858 X 10468 h 120 78 x
909HT 2519EM 4129) 57399 7349 8959Y 10569i 12179y
100ALF 26 1ASUB 422A* 583A: 744AJ 905A Z 106 6Aj 122 7TAz
110BVT 27 1BESC 432B+ 593B; 754BK 915B[ 107 6Bk 123 7B {
120CFF 281CFS 442C, 603C< 764CL 925C\ 1086C| 124 7C|
130DCR 291DGS 452D- 613D= 774DM 935D] 1096Dm 1257D}
140ESO 301ERS 462E. 623E> 784EN 945E" 1106En 126 7E ~
150F Sl 311FUS 472F/ 633F? 794FO 955F _ 111 6Fo0 127 7F DEL

This screen is carefully designed to fit in 23 rows and 79 columns, so that it will fit in a 24x80
terminalwindow.

This table could be generated at runtime, on the fly. Grinding out the decimal and hex columns would
be easy enough. But between wrapping the table at the right places and knowing when to print
memonics like NUL rather than characters, there would have been enough odd corner cases to make
the code distinctly unpleasant. Furthermore, the columns had to be unevenly spaced to make the table
fitin 79 columns. But any Unix programmer would reflexively express it as a block of data before
finding out thesehings.

The most naive way to generate the usage screen would have been to put each |Dimitrbzer in
theascii.c  source code, and then have all lines be written out by code that steps through the
initializer. The problem with this method is that the extra data in the C initializer format (trailing \n,
string quotes, comma) would make the lines longer than 79 characters, causing them to wrap and
making it rather difficult to map the appearance of the code to the appearance of the output. This, in
turn, would make the display difficult to edit, which was annoying when the author was tinkering it to
fit in 24x80 screemwells.



A more sophisticated method using the string-pasting behavior of the @Ni®jprocessor collided

with a variant of the same problem. Essentially, any way of inlining the usage screen explicitly would
involve punctuation at start and end of line that there’s no room for. And copying the table to the
screen from a file at runtime seemed like a fragile expedient; after all, the file colddtget

Here’s the solution. The distribution contains a file that just contains the usage screen, exactly as listed
above and namesplashscreen . TheC source contains the followirfgnction:

void
showHelp(FILE *out, char *progname)

fprintf(out,"Usage: %s [-dxohv] [-t] [char-alias...]\n", progname);
#include "splashscreen.h”

exit(0);
}

And splashscreen.h is generated by a makefdduction:

splashscreen.h: splashscreen
sed <splashscreen >splashscreen.h -e 'sA\VA\Wg' -e 's/"\\"/" -e 's/.*/puts("&");/’

So when the program is built, teplashscreen file is automatically massaged into a series of
output function calls, which are then included by the C preprocessor in théurigtion.

By generating the code from data, we get to keep the editable version of the usage screen identical to
its display appearance. This promatesisparencyand. Furthermore, we could modify the usage

screen at will without touching the C code at all, and the right thing would automatically happen on
the nextbuild.

This is an almost trivial example, but it nevertheless illustrates the advantages of even simple and
ad-hoc code generation. Similar techniques could be applied to larger programs with correspondingly
greatetbenefits.

Casestudy: generating HTML code for a tabular list

Let's suppose that we want to put a page of tabular data on a web page. We want the first few lines to

look like[Example9.5

Example 9.5. Desired output format for the startable

Aalat David Weber The Armageddon Inheritance
Aelmos Alan Dean Foster The Man who Used the Universe
Aedryr Steve Miller & Sharon Lee  Scout’s Progress

Aergistal  Gerard Klein The Overlords of War

Afdiar L. Neil Smith Tom Paine Maru

Agandar Donald Kingsbury Psychohistorical Crisis
Aghirnamirr  Jo Clayton Shadowkill

The thick-as-a-plank way to handle this would be to hand-write HTML table code for the desired
appearance. Then, each time we want to add a name, we’d have to hand-write another set of <tr> and
<td> for the entry. This would get very tedious very quickly. But what's worse, changing the format of
the list would require hand-hacking evenytry.



The superficially clever way to handle this would be to make this data a three-column relation in a
database, then use some fancy CGI technique or a database-capable templating engine like PHP to
generate the page on the fly. But suppose we know that the list will not change very often, don’t want
to run a database server just to be able to display this list, and don’t want to load the server with
unnecessary CGiaffic?

There’s a solution. We put the data in a tabular flat file formajHikample9.6

Example 9.6. Master form of the startable

Aalat :David Weber :The Armageddon Inheritance
Aelmos :Alan Dean Foster :The Man who Used the Universe
Aedryr :Steve Miller & Sharon Lee :Scout's Progress

Aergistal :Gerard Klein :The Overlords of War

Afdiar :L. Neil Smith :Tom Paine Maru

Agandar :Donald Kingsbury :Psychohistorical Crisis
Aghirnamirr :Jo Clayton :Shadowkill

We could in a pinch have done without the explicit colon field delimiters, using the pattern consisting
of two or more spaces as a delimiter, but the explicit delimiter protects us in case we hit spacebar twice
while editing a field value and fail to notiie

We then write a script ishell, Perl,Python,or Tcl that massages this file into an HTML table, and run
that each time we add an entry. The old-school Unix way would revolve around the following
nigh-unreadable sed(&kpression

sed N[N\ sli<tr><td>\1<Vtd><td>\2<\td><td>\3<\/td><\Vitr>/’

or this perhaps slightly more scrutable awktdggram:

awk -F: {printf("<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n", $1, $2, $3)}’

(If either of these examples interests but mystifies, read the documentation for awk(1) or sed(1). We
[explainetin Chapte[8 (Minilanguageg}hat the former has largely fallen out of use. The latter is still

an important Unix tool which we haven’'t examined in detail because (a) Unix programmers already
know it, and (b) it's easy for non-Unix programmers to pick up once they grasp the basic ideas about
pipelines andedirection.)

A new-school solution, easier to read and cleaner because it doesn’t wire in an assumption about the
number of fields per record, would center on this Pytaite:

for row in map(lambda x: x.rstrip().split(’:’), sys.stdin.readlines()):
print "<tr><td>" + "</td><td>".join(row) + "</td></tr>"

These scripts took about five minutes each to write and debug, certainly less time than would have
been required to either hand-hack the initial HTML or create and verify the database. The combination
of the table and this code will be much simpler to maintain than either the under-engineered
hand-hacked HTML or the over-engineedzsdabase.

A further advantage of this way of solving the problem is that the master file stays easy to search and
modify with an ordinary text editor. Another is that we can experiment with different table-to-HTML
transformations by tweaking the generator script, or easily subset the report by putting a grep(1) filter
before it.



The author actually uses this technique to maintain the web page thiatdisisail’stest sites; the
example above is science-fictional only because publishing the real data would reveal account
usernames anghsswords.

This was a somewhat less trivial example than the previous one. What we’ve actually designed here is
a separation between content and formatting, with the generator script acting as a stylesheet. (This is
yet another mechanism-vs.-polisgparation.)

The lesson in both these cases is the same. Do as little work as possible. Let the data shape the code.
Lean on your tools. Separate mechanism from policy. Expert Unix programmers learn to see
possibilities like these quickly and automatically; they work smartehanoler.



Special-purposecodegenerators

Unix has a long-standing tradition of hosting tools that are specifically designed to generate code for
various special purposes. The venerable monuments of this tradition, which go back to Version 7 and
were actually used to write the original Portable C Compiler back in the 1970s, are yacc(1) and lex(1).
Their modern, upward-compatible successors are bison(1) and flex(1), parGitheolkit and still
heavily used today. These programs have set an example which is carried forward in projects like
GNOME'’s Glade interfacbuilder.

Yacc and Lex

Yacc and Lex are tools for generating language parsers. We observed in Blisiméanguages)

that your first minilanguage is all too likely to be an accident rather than a design. That accident is
likely to have a hand-coded parser that costs you far too much maintenance and debugging time —
especially if you have not realized it is a parser, and have thus failed to properly separate it from the
remainder of your application code. Parser generators are tools for doing better than an accidental,
ad-hoc implementation; they don't just let you express your grammar specification at a higher level,
they also wall off all the parser’s implementation complexity from the rest ofcpale:.

If you reach a point where you are planning to implement a minilanguage from scratch, rather than by
extending or embedding an existing scriptimgguageor parsing XML, Yacc and Lex will probably
be your most important tools after yaQicompiler.

Lex and Yacc each generate code for a single function — respectively, “get a token from the input
stream” and “parse a sequence of tokens to see if it matches a grammar”. Usually, the Yacc-generated
parser function calls a Lex-generated tokenizer function each time it wants to get another token. If
there are no user-written C productions at all in the Yacc-generted parser, all it will do is a syntax
check; the value returned will tell the caller if the input matched the grammar éxyasting.

More usually, the user's C code, embedded in the Yacc-generated parser, populates some runtime data
structures as a side-effect of parsing the input. If the minilanguage is declarative, your application can
use these runtime data structures directly. If your design was an imperative minilanguage, the data
structures might include a parse tree which is immediately fed to some kind of evdiuratiton.

Lex is a lexical analyzer generator. It's a member of the same functional family as grep(1) and awk(1),
but more powerful because it enables you to arrange for arbitrary C code to be executed on each
match. It accepts a declarative minilanguage and emits skeletodeC

A crude but useful way to think about what a Lex-generated tokenizer does is as a sort of inverse
grep(1). Where grep(1) takes a single regular expression and returns a list of matches in the incoming
data stream, each call to a Lex-generated tokenizer takes a list of regular expressions and indicates
which expression occurs next in tthatastream.

Lex was written to automate the task of generating lexical analyzers (tokenizers) for compilers. It
turned out to have a surprisingly wide range of uses for other kinds of pattern recognition, and has
since been described as “the Swiss-army knife of Unix programriffig”

If you are attacking any kind of pattern-recognition or state-machine problem in which all the possible
input stimuli will fit in a byte, lex may enable you to generate code that will be more efficient and
reliable than a hand-crafted state machine. Most importantly, the lex specification minilanguage is
much higher-level and mommpactthan equivalent handcrafted C. Modules are available to use flex,



the open-source version, wiiterl (find them with a web search for “lex perl”), and there is a
workalike implementation that is part of PLY Rython.

Yacc is a parser generator. It, too, was written to automate part of the job of writing compilers. It takes
as input a grammar specification in a declarative minilanguage resembling BNF (Backus-Naur Form)
with C code associated with each element of the grammar. It generates code for a parser function
which, when called, accepts text matching the grammar from an input stream. As each grammar
element is recognized, the parser function runs the associatetkeC

The combination of Lex and Yacc is very effective for writing language interpreters of all kinds.
Though most Unix programmers never get to do the kind of general-purpose compiler-building that
these tools were meant to assist, they're extremely useful for writing parsers for run-control file
syntaxes and domain-specifidnilanguages.

Lex-generated tokenizers are very fast at recognizing low-level patterns in input streams, but the
regular-expression minilanguage what Lex knows is not good at counting things, or recognizing
recursively nested structures. For parsing those, you want Yacc. On the other hand, while you
theoretically could write a Yacc grammar to do its own token-gathering, the grammar to specify that
would be hugely bloated and the parser extremely slow. For tokenizing input, you want Lex. Thus,
these tools arsymbiotic.

If you can implement your parser in a higher-level language than C (which we recommend you do; see
Chaptefl2 (Languagegjor discussion), then look for equivalent facilities like Python’s PLY (which
covers both Lex and Yacd or Perl'sPY and Parse::Yapp modules Java’sCUP, [ Jack,Pq

or Yacc/M 7Y packages.

As with macro processors, one of the problems with code generators and preprocessors is that
compile-time errors in the generated code may carry line numbers that are relative to the generated
code (which you don’t want to edit) rather than the generator input (which is where you need to make
corrections). Yacc and Lex address this by generating the same #line constructsGheghecessor
does; these set the current line number for error reporting so the numbers will come out right.Any
program that generat€sor C++ should ddikewise.

More generally, well-designed procedural-code generators should never require the user to hand-alter
or even look at the generated parts. Getting those right is the code gengiator’s

Casestudy: the fetchmailrc grammar

The canonical demonstration example that seems to have appeared in every lex and yacc tutorial ever
written is a toy interactive calculator program that parses and evaluates arithmetic expressions entered
by the user. We will spare you yet another repetition of this cliche; if you are interested, consult the
source code of the bc(1) and dc(1) calculator implementations from thep@ijédt.

Instead, the grammar of fetchmaitien-control-fileparser provides a good medium-sized case study
in lex and yacc usage. There are a couple of points of interest

The Lex specification, incfile_L.I , is a very typical implementation of a shell-like syntax. Note

how two complementary productions support either single or double-quoted strings; this is a good idea
in general. The productions for accepting (possibly signed) integer literals and discarding comments
are also prettgeneric.



The Yacc specification, ircfile_y.y , is long but straightforward. It does not perform any

fetchmail actions, just sets bits in a list of internal control blocks. After startup, fetchmail's normal
mode of operation is simply to repeatedly walk that list, using each record to drive a retrieval session
with a remotesite.

Glade

We looked at Glade in the previous example as a good example of a declarative minilanguage. We
also noted that its back end produces a result by generating code in any one ofeseperges.

Glade is a good modern example of an application-code generator. What makes it Unixy in spirit are
the following features, which most GUI builders (especially most proprietary GUI builders) don’t
have:

e Rather than being glued together as one monster monolith, the Glade GUI and Glade code
generator obey the Rule of Separation (following the “separated engine and interface” design
pattern).

e The GUI and code generator are connected by an (XML-based) textual data file format that can
be read and modified by othiols.

® Multiple target languages (as opposed to fust C++) are supported. More could easily be
added.

The design implies that it should also be possible to replace the Glade GUI editor component, should
that ever becoméesirable.

™ The common latter-day description of Perl as a “Swiss-army chainsaetiigtive.
™4 PLY is[downloadable
#9 Ccup ifdownloadable
9 Jack ifdownloadable

4 Yacc/M isdownloadab


http://systems.cs.uchicago.edu/ply/
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-jack.html
http://david.tribble.com/yaccm.html

Avoiding traps

The methods we've just surveyed can be very powerful tools. Like other sorts of power tools, they can
turn in your hand and injure you if you're rezreful.

An important rule when doing any kind of code generation is this: always push problems upstream.
Don’t hack the generated code or any intermediate representations by hand — instead, think of a way
to improve or replace your translation tool. Otherwise you're likely to find that hand-patching bits
which should have been generated correctly by machine will have turned into an infingekime

One final caveat is worth noting: all of the good things about code generation from higher-level
specifications can go horribly wrong if the generation tool is proprietary. This is really the same
problem that crops up with single-vendor proprietary languages. If the vendor changes the language
specification in a way that's not backward-compatible, and you don’t have access to the source code of
the version that works for you, you can find yourself in deep trouble when you need to forward-port to

a new environment. Difficulties with porting the code off the set of use cases or platforms the vendor
supports can bite at unexpectades.

Some people try to protect themselves by requiring that the generation tool and their code rigidly
adhere to third-party standards. This should be good enough in theory; normally it turns out not to be
so in practice. Vendors are driven to lock in customers, and most standards leave them room to do this
by underspecified in ways you generally don't realize until it's too late to back out without suffering
extreme pain and massive schedule disruption. Further, third-party standards do not remove the risks
of bugs. Even the most benign vendors have them, and it is guaranteed that if you hit one it will be
during a deadline crunch. The only really reliable way to protect yourself is by sticlopgresource

tools — code that you can see inside and, if necessqgir.



Chapter 10.Configuration
Starting On The Right Foot.
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Let us watch well our beginnings, and results will marthgenselves.
--Alexander Clar1764)

The interface of a program is the sum of all the ways that it communicates with human users and other
programs. In the Unix tradition of interface design, there are two themes which we encounter over and
over again. One is anticipatory design for communication with other programs; the other is the Rule of
LeastSurprise.

Unix programs can give you extra power from being used in synergistically powerful combinations;

we discussed various methods for hooking together such combinations in [Bapter
[(Multiprogramming)) The ‘other programs’ part of Unix interface design is not an afterthought or a
marginal case as it is under many other operating systems. Rather, it is a central challenge that has to
be balanced and integrated carefully with the demands of interface design forusarsan

The Rule of Least Surprise is a general principle in the design of all kinds of interfaces, not just
software: “Do the least surprising thing”. It's a consequence of the fact that human beings can only
pay attention to one thing at one time (se€Tthe Humanénterfac[Raskin). Surprises in the

interface focus that single locus of attention on the interface, rather than on the task bdierngs.

Thus, to design usable interfaces, it's best when possible not to design an entire new interface model.
Novelty is a barrier to entry; it puts a learning burden on the user, so minimize it. Instead, think
carefully about the experience and knowledge of your user base. Try to find functional similarities
between your program and programs they are likely to already know about. Then mimic the relevant
parts of the existingterfaces.

The Rule of Least Surprise should not be interpreted as a call for mechanical conservatism in design.
Novelty raises the cost of a user’s first few interactions with an interface, but poor design will make
the interface needlessly painful forever. As in other sorts of design, rules are not a substitute for good
taste and engineering judgement. Consider your tradeoffs carefully — and consider them from the
user'spoint of view. The bias implied by the Rule of Least Surprise is a good one to hold consciously,
mainly because interface designers (like other programmers) have an unconscious tendency to be too



clever for the user’good.

Much of Unix-community tradition about program interface design may seem odd and arbitrary — or
even, in the age of the GUI, outright regressive — when you encounter it for the first time. But in spite
of various blemishes and irregularities, that tradition has an inner logic to it which is worth learning
and understanding. It reflects heuristics accumulated over Unix’s long history about ways to do
effective communication both with human beings and with other programs. And it includes a set of
conventions which create commonalities between programs — it defines ‘least surprising’ alternatives
for a wide range of common interface-degigablems.

Under Unix, programs can communicate with their environment in a rich variety of ways. It's
convenient to divide these into (a) startup-environment queries and (b) interactive channels. In this
chapter, we’ll focus primarily on startup-environment queries. The next chapter will discuss interactive
channels.

Classically, there are four places a Unix program can look for control information in its startup-time
environment. These queries are usually done in the following order, so that settings found earlier can
help the program compute locations for latdrievals:

e Run-control files undeletc  (or at fixed location elsewhere $ystem-land).
® System-set environmewndriables.

® Run-control files (or ‘dotfiles’) in the user's home directory. (See the appendix on
operating-system styles for a discussion of this important concept, ufritdmiliar.)

® User-set environmemwariables.
® Switches and arguments passed to the program on the command line that invoked

We’'ll discuss each of these places in more detail, then examine sonstuchss.



Run-control files

A run-control file is a file of declarations or commands associated with a program that it interprets on
startup. If a program has site-specific configuration shared by all users at a site, it will often have a run
control file under théetc  directory. (Some Unixes have &ic/conf subdirectory that collects

such data.)

User-specific configuration information is often carried in a hidden run control file in the user’s home
directory. Such files are often called ‘dotfiles’ because they exploit the Unix convention that a
filename beginning with a dot is normally invisible to directory-listing tdgids

Programs may also have run-control or dot directories. These group together several configuration
files that are related to the program, but that are most conveniently treated separately (perhaps because
they relate to different subsystems of the program, or have diffeyintgxes).

Whether file or directory, it is now conventional that the location of the run-control information has

the same base-name as the executable that reads it. An older convention still common among system
programs uses the excutable’s name with the suffix ‘rc’ for ‘run control’. Thus, if you write a program
called ‘seekstuff’ that has both site-wide and user-specific configuration, an experienced Unix user

would expect to find the former &dtc/seekstuff and the latter aseekstuff in the user’'s
home directory; but it would be unsurprising if the locations etr#seekstuffrc and
.seekstuffrc , especially if seekstuff were a system utility of sauod.

In Chaptefs (Textuality}we described a somewhat different set of design rules for textual data file
formats, and discussed how to choose to optimize for different weightings of interoperability,
transparencynd, and transaction economy. Run-control files are typically only read once at program
startup and not written; economy is therefore usually not a major concern. Interoperability and
transparency both push us towards textual formats designed to be read by human beings and modified
with an ordinary texeditor.

While the semantics of run-control files are of course completely program dependent, there are some
design rules about run-control syntax that are very widely observed. We’'ll describe those next; but
first we'll describe an importamxception.

If the program is an interpreter for a language, then it is expected to be simply a file of commands in
the syntax of that language, to be executed at startup. This is an important rule, because Unix tradition
strongly encourages the design of all kinds of programs as special-purpose languages and
minilanguages. Well-known examples with dotfiles of this kind include the various Unix command
shells and the Emacs programmadxigor.

(One reason for this design rule is the belief that special cases are bad news — thus, that any switch
that changes the behavior of a language should be settable from within the language. Thus, if as a
language designer you find that yoannotexpress all the startup settings of a language in the the
language itself, a Unix programmer would say you have a design problem — which is what you
should be fixing, rather than devising a special-casgmtax.)

This exception aside, here are the normal style rules for run control syntaxes. Historically, they are
patterned on the syntax of Urskells:



1. Support explanatory comments, and lead them#vitihe syntax should also ignore whitespace
before #, so that comments on the same line as configuration directiseppogted.

2. Treat all runs of whitespace asjuivalent.That is, treat runs of spaces, tabs, and newlines
syntactically the same as a single space. In run control files (unlike data files) line-oriented
syntaxes that use newline as a record separator are considered archaic andfoaoingood

3. Lexically treat the file as a simple sequence of whitespace-sep#oltat.Complicated lexical
rules are hard to learn, hard to remember, and hard for humans to parsehémoid

4. But, support a string syntax for tokens with embeddeitespaceUse single and/or
double-quote as balanced delimiters. If you support both, beware of giving different semantics as
they have in shell; this is a well-known sourceaffusion.

5. Support a backslash syntax for embedding unprintable and special charadt#isadsThe
standard pattern for this is the backslash-escape syntax supported by C compilers. Thus, for
example, it would be quite surprising if the string "a\tb" were not interpreted as a character ‘a’,
followed by a tab, followed by the charactet

Some aspects of shell syntax, on the other hand, shotitee emulated in run-control syntaxes — at
least not without a good and specific reason. The shell’'s baroque quoting and bracketing rules, and its
special metacharacters for wildcarding and variable substitution, both fall catagory.

It bears repeating that the point of these conventions is to reduce the amount of novelty that users have
to cope with when they read and edit the run-control file for a program they have never seen before.
Therefore, if you have to break them, try to do so in a way that makes it visually obvious that you have
done so, document your syntax with particular care, and (most importantly) design it so it's easy to

pick up byexample.

These standard style rules only describe conventions about tokenizing and comments. The names of
run-control files, their higher-level syntax, and the semantic interpretation of the syntax are usually
very application-specific. There are a very few exceptions to this rule, however — dotfiles which have
become ‘well-known’ in the sense that they routinely carry information used by a whole class of
applications. Sharing run-control-file formats in this way reduces the amount of novelty users have to
copewith.

Of these, probably the best-established isrbrc  file. Internet client programs that must track
host/password pairs for a user can usually get them fromehe file, if it exists.

Casestudy: The .netrcfile

The .netrc file is a good example of the standard rules in action. An example, with the passwords

changed to protect the innocent, ifExample10.1
Example 10.1. A .netreexample

# FTP access to my Web host
machine unixl.netaxs.com
login esr
password joesatriani

# My main mailserver at Netaxs
machine imap.netaxs.com



login esr
password jeffbeck

# Auxiliary IMAP maildrop at CCIL
machine imap.ccil.org

login esr

password marcbonilla

# Auxiliary POP maildrop at CCIL
machine pop3.ccil.org

login esr

password ericjohnson

# Shell account at CCIL
machine locke.ccil.org
login esr
password stevemorse

Observe that this format is pretty easy to parse by eyeball even if you've never seen one before; it's a
set of machine/login/password triples, each of which describes an account on a remote host. This kind
of transparencynd is important — much more important, actually, than the time economy of faster
interpretation or the space economy of a more compact and cryptic file format. It economizes the far
more valuable resource thatismantime, by making it likely that a human being will be able to read

and modify the format without having to read a manual or use a tool less familiar than a plain old text
editor.

Observe also that this format is used to supply information for multiple services — an advantage,
because it means sensitive password information need only be stored in one plaoetrd@he

format was designed for the original Unix FTP client program. It's used by all FTP clients, and also
understood by some telnet clients and byféhehmailprogramlf you are writing an Internet client

that must do password authentication through remote logins, the Rule of Least Surprise demands that
it use the contents ofietrc  asdefaults.

Portability to other operating systems

System-wide run-control files are a design tactic that can be used on almost any operating system, but
dotfiles are rather more difficult to map over to a non-Unix environment. The critical thing missing

from most non-Unix operating systems is true multi-user capability and the notion of a per-user home
directory. DOS and Windows versions up to ME (including 95 and 98), for example, completely lack
any such notion; all configuration information has to be stored either in system-wide run control files

at a fixed location, the Windows registry, or configuration files in the same directory a program is run
from. Windows NT has some notion of per-user home directories, but it is only poorly supported by
the systentools.

P4 To make dotfiles visible, use the -a optioriggfl).



Environment variables

When a Unix program starts up, the environment accessible to it includes a set of name to value
associations. Some of these are set manually by the user; others are set up by the system at login time,
or by your shell (if you're running one). Names and values aresbarigs.

In C andC++these values can be queried with the library function geterR€BandPythoninitialize
environment-dictionary objects at startup. Other languages generally follow one of thesedsis.

There are a number of well-known environment variables you can expect to find defined on startup of
a program from the Unix shell. These (especidlMIEwill often need to be evaluatbdeforeyou
read a locatlotfile.

USER

Login name of the account under which this session is logged in ¢B®zntion).
LOGNAME

Login name of the account under which this session is logged in (Systemvgntion).
HOME

Home directory of the user running tisisssion.
uiD

User ID of the account under which this session is logged
COLUMNS

The number of character-cell columns on the controlling terminal or terminal-emuiatmw.
LINES

The number of character-cell rows on the controlling terminal or terminal-emwiaigow.
SHELL

The name of the user’'s command shell (often used by shedmrmands).
EDITOR

The name of the user’s preferred editor (often used by shetlounands).
MAILER

The name of the user’s preferred mail user agent (often used by shefituands).

PATH



The list of directories that the shell searches looking for executable commands to nwatwh a
TERM

Name of the terminal type of the session console or terminal emulator window (see the terminfo
case study in Chapt@r(Transparencyfor background).

(This list is representative, but rethaustive.)

TheHOM€Bvariable is especially important, because many programs use it to find the calling user’s
dotfiles (others call some functions in @euntime library to get the calling user’s honieectory).

Note that some or all environment variables magbe set when a program is started by some other
method than a shell spawn. In particular, daemon listenerg G AP socket often don’t have these
variables set — and if they do, the values are unlikely wesbéul.

Although applications are free to interpret environment variables outside the system-defined set, it is
fairly unusual to actually do so. Environment values are not really suitable for passing structured
information into a program (though it can in principle be done via parsing of the values). Instead,
modern Unix applications tend to use run-control filescotiles.

There are, however, three design patterns in which user-defined environment variablessednl be

The same information is expected to be used by squegiams MAILER andEDITOR are like this.
Rather than require users to change multiple application dotfiles when they want to change their
preferred mail user agent or editor, the convention of reading both from environment variables allows
the information to be kept in just one easily modifigilbee.

A value varies across several contexts that sdatéles.Some pieces of start-up information are
expected to vary across several contexts in which the calling user would share common run control
files and dotffiles. For example, consider several shell sessions open through terminal emulator
windows on an X desktop. They will all see the same dotfiles, but might have different values of
COLUMNSLINES, andTERM

A value varies too often for dotfiles, but doesn’t change on stentyip.A user-defined environment
variable may (for example) be used to pass a file-system or Internet location that is the root of a tree of
files that the program should play with. The CVS version-control system interprets the variable
CVSROOThis way, for example. Several newsreader clients that fetch news from servers using the
NNTP protocol interpret the variabMNTPSERVERS the location of the serverdaery.

In general, a user-defined environment variable can be an effective design choice when the value
changes often enough to make editing a dotfile each time inconvenient, but not necessarily every time
(so always setting the location with a command-line option would also be inconvenient). Such
variables should typically be evaluatafter a local dotfile and be permitted to override settings in

Finally, note that there is a tradition (exemplified by B#elrHvariable) of using colon as a separator
when an environment variable must contain multiple fields, especially when the fields can be
interpreted as a search path of scos.



Portability to other operating systems

Environment settings have only very limited portability off Unix. Microsoft operatysgemshave an
environment feature modeled on that of Unix, and uBABHvariable as Unix does to set the binary
search path, but other variables are not supported. Other operating systems generally do not have a

local equivalent of environmenmariables.



Command-line options

Unix tradition encourages the use of command-line switches to control programs, so that they can be
controlled from scripts. This is especially important for programs that function as pipes or filters.
There are three conventions for how to design command-line options; the original Unix style, the X
toolkit style, and the GNUtyle.

In the original Unix tradition, command-line options are single letters preceded by a single dash.
Mode-flag options that do not take following arguments can be ganged together; thus, if -a and -b are
mode options, -ab or -ba is also correct and enables both. The argument to an option, if any, follows it
separated bwhitespace.

In this style, lower-case options are preferred to upper. When you use upper-case options, it's good
form for them to be special variants of the lower-agsteon.

The Unix style evolved on slow ASR-33 teletypes that made terseness a virtue; thus the single-letter
options. Holding down the shift key required actual effort; thus the preference for lower-case, and the
fact that “-” (rather than the perhaps more logical “+") became used to elues.

The GNU style uses option keywords (rather than keyword letters) preceded by two dashes. It evolved
years later when some of the rather elaborate GNU utilities began to run out of single-letter option
keys. GNU-style options cannot be ganged together without separating whitespace. An option
argument (if any) may be separated by whitespace or a single “=" (equatiségalter.

The GNU double-dash option leader was chosen so that traditional single-letter options and GNU-style
keyword options could be unambiguously mixed on the same command line. Thus, if your initial
design has few and simple options, you can use the Unix style without worrying about causing an
incompatible ‘flag day’ if you need to switch to GNU style later on. On the other hand, if you are

using the GNU style, it is good practice to support single-letter equivalents for at least the most
commonoptions.

The X toolkit style, confusingly, uses a single dash and keyword options. It is interpreted by X toolkits
that filter out and process certain options (such as -geometry and -display) before handing the filtered
command line to the application logic for interpretation. The X toolkit style is not properly compatible
with either the classic Unix or GNU styles, and should not be used in new programs unless the value
of being compatible with older X conventions seems Wayi.

Many tools accept a bare dash, not associated with any option letter, as a pseudo-filename directing the
application to read from standard input. It is also conventional to recognize a double dash as a signal to
stop option interpretation ant treat all following arguments as plgimments.

Most Unix languages offer libraries that will parse a command line for you in either classic-Unix or
GNU style (interpreting the double-dash conventiowel).

The a to z of command-lineoptions

Over time, frequently-used options in well-known Unix programs have established a loose sort of
semantic standard for what various flags might be expected to mean. The following is a list of options
and meanings that should prove usefully unsurprising to an experienceddgnix



All (without argument). If there is a GNU-style —all option, for -a to be anything but a synonym
for it would be quite surprising. Examples: fuser{éjchmail(1).

Buffer or block size (with argument). Set a critical buffer size, or (in a program having to do with
archiving or managing storage media) set a block size. Examples: du(1)ta{(),

Batch. If the program is naturally interactive, -b may be used to suppress prompts or set other
options appropriate to accepting input from a file rather than a human operator. Example: flex(1).

Command (with argument). If the program is an interpreter that normally takes commands from
standard input, it is expected that the option of a -c argument will be passed to it as a single line
of input. This convention is particularly strong for shells and shell-like interpreters. Examples:
sh(1), ash(1), bsh(1), ksh(1), python(1). Compaizetew.

Check (without argument). Check the correctness of the file argument(s) to the command, but
don’t actually perform normal processing. Frequently used as a syntax-check option by programs
that do interpretation of command files. Examples: getty@rj(1).

Debug (with or without argument). Set the level of debugging messages. This one is very
common.

Occasionally -d has the sense of ‘deletedectory’.

Define (with argument). Set the value of some symbol in an interpreter, compiler, or (especially)
macro-processor-like application. The model is the use of -D b§ebmpiler'smacro
preprocessor. This is a very strong association for most Unix programmers; don't try iio fight

Execute (with argument). Programs that are wrappers, or that can be used as wrappers, often
allow -e to set the program they hand off control to. One well-known example is xterm(1); perl(1)
is another.

Edit. A program that can open a resource in either a read-only or editable mode may allow -e to
specify opening in the editable mode. Examples: crontab(1), the get(1) utility of the SCCS
version-controbystem.

Occasionally -e has the senséenfclude’.



File (with argument). Very often used with an argument to specify an input (or, less frequently,
output) file for programs that need to random-access their input or output (so that redirection via < or
> won't suffice). The classic example is tar(1); others abound. Compare -0 below; often, -f is the
input-side analog df.

Daemons often use -f to force processing of a configuration file from a non-default location.
Examples: ssh(1), httpd(1), and many otteemons.

Force (typically without argument). Force some operation (such as) a file lock or unlock) that is
normally performed conditionally. This is lessmmon.

Headers (typically without argument). Enable, suppress, or modify headers on a tabular report
generated by the program. Classical examples include pr(Jséhd

Initialize (usually without argument). Set some critical resource or database associated with the
program to an initial or empty state. Example: ci(1R®S.

Interactive (usually without argument). Force a program that does not normally query for
confirmation to do so. There is a classical example, rm(1), mv(1), flex(1). but this use is not
common.

Include (with argument). Add a file or directory name to those searched for resources by the
application. All Unix compilers with any equivalent of source file inclusion in their languages use
-1 in this sense. It would be extremely surprising to see this option letter used in anyagther

Keep (without argument). Used to suppress the normal deletion of some file, message, or
resource. Examples: passwd(1), gzip(1), bzip(1) farathmail(1).

Occasionally -k has the sens€lalf’.

List (without argument). If the program is an archiver or interpreter/player for some kind of
directory or archive format, it would be quite surprising for -l to do anything but request an item
listing. Examples: arc(1), binhex(1), unzip(1). (However, tar(1) and cpio(Exasptions.)

Load (with argument). If the program is a linker or a language interpreter, -l invariably loads a
library, in some appropriate sense. Examples: gcc(1), f/afigcs(1).

Occasionally -l has the sense of ‘length’lock’.



Message (with argument). Used with an argument, this passes it in as a message string for some
logging or announcement purpose. Examples: aifds)(1).

Occasionally -m has the sense of ‘mail’, ‘mode’;odification-time’.

Number (with argument). Used, for example, for page number ranges in programs such as
head(1), tail(1), nroff(1) anatoff(1).

Not (without argument). Used to suppress normal actions in programs suake(d).

Output (with argument). When a program needs to specify an output file or device by name on he
command line, the -0 option does it. Examples: as(1), cc(1), sort(1). On anything with a
compiler-like interface, it would be extremely surprising to see this option used in anywather

Port (with argument). Especially used for options that spa@cy/IP port numbers, as in cvs(1),
the PostgreSQL tools, smbclient(1), snmpdgsh(1).

Protocol (with argument). Exampldetchmail(1),snmpnetstat(1).

Quiet (usually without argument). Suppress normal result or diagnostic output. This is very
common. Examples: ci(1), co(Ihake(1).

-r (also-R)

Recurse (without argument). If the program operates on a directory, then this option might tell it
to recurse on all subdirectories. Any other use in a utility that operated on directories would be
quite surprising. The classic example is, of cowpé€l).

Reverse (without argument). Examples: Is(1), sort(1). A filter might use this to reverse its normal
translation action (compard).

Silent (without argument). Suppress normal diagnostic or result output (similar to -q). Examples:
csplit(1), ex(1)fetchmail(1).

Subject (with argumentplwaysused with this meaning on commands that send or manipulate
mail or news messages. Examples: mail(1), elnmi}(1).

Occasionally -s has the senséside’.



Tag (with argument). Name a location or give a string for a program to use as a retrieval key.
Especially used with text editors and viewers. Examples: cvs(1), ex(1), lesd(L),

-u
User (with argument). Specify a user, by name or numeric UID. Examples: crontab(1), emacs(1),
fetchmail(1),fuser(1),ps(1).

-V
Verbose (with or without argument). Used to enable transaction-monitoring, more voluminous
listings, or debugging output. Examples: cat(1), cp(1), flex(1), tar(1), otheys.
Version (without argument). Display program’s version on standard output and exit. Examples:
cvs(1), chattr(1), patch(1), uucp(1). More usually this action is invokeW.by

-V
Version (without argument). Display program’s version on standard output and exit (often also
prints compiled-in configuration details as well). Examples: gcc(1), flex(1), hostname(1), many
others. It would be quite surprising for this switch to be used in anywtyer

-w
Width (with argument). Especially used for specifying widths in output formats. Examples:
faces(1), grops(1), od(1), pr(Bhar(1).
Warning (without argument). Enable warning diagnostics, or suppress them. Examples:
fetchmail(1),flex(1), nsgmls(1).

-X
Enable debugging (with or without argument). Like -d. Examples: sinftp(1).
Exclude (with argument). List files to be excluded from a archive or working set. Examples:
tar(1),zip(1).

Yy
Yes (without argument). Authorize potentially destructive actions for which the program would
normally require confirmation. Examples: fsck(d)1).

-Z

Enable compression (without argument). Archiving and backup programs often use this.
Examples: bzip(1), GNU tar(1), zcat(1), zip(@ys(1).

The examples given above are taken fronmLihextoolset,but should be good on most modern
Unixes.

When you're choosing command-line option letters for your program, look at the manual pages for
similar tools. Try to use the same option letters they use for the analogous functions of your program.
Note that there are particular application areas that have particularly strong conventions about
command-line switches which you violate at your peril — compilers, mailers, text filters, network



utilities and X software are all notable for this. Anybody who wrote a mail agent that used -s as
anything but a Subject switch, for example, would have scorn rightly heaped uphoite

The GNUprojectrecommends conventional meanings for many double-dash options in the GNU
coding standard®j These are worth following wheagplicable.

Portability to other operating systems

To have command-line options, you have to have a command line. The MS-DOS family does, of
course, though in Windows it's hidden by a GUI and rather buggy; the fact that the option character is
normally ‘/’ rather than ‘-’ is merely a detail. MacOS classic and other pure GUI environments have
no close equivalent of command-lioptions.

Y See théGnu CodingStandards



http://www.gnu.org/prep/standards.html

How to choose among configuration-settinghethods

We've looked in turn at system and user run control files, at environment variables, and at
command-line arguments. Observe the progression from least-easily changed to most-easily changed.
There is a strong convention that well-behaved Unix programs that use more than one of these places
should look at them in the order given, allowing later settings to override earlier ones. This convention
ensures that such programs carstr@pted.

In particular, environment settings usually override dotfile settings, but can be overridden by
command-line options. It is good practice to provide an overriding command-line option for each
user-defined environment variable that the program interprets — that way the program can be scripted
with well-defined behavior regardless of the way the variablesedre

Which of these places you choose to look at depends on how much persistent configuration state your
program needs to keep around between invocations. Programs designed mainly to be used in a batch
mode (as generators or filters in pipelines, for example) are usually completely configured with
command-line options. Good examples of this pattern include Is(1), grep(1) and sort(1)). At the other
extreme, large programs with complicated interactive behavior may rely entirely on run-control files
and environment variables, and normal use involves few command-line options or none at all. Most X
window managers are a good example of paisern.

Occasionally a command-line option will deliberately override the normal sequence, for example by
telling the program to look in a non-default place for a run-cofiteol

Let's look at a couple of programs that gather configuration data from all three places. It will be
instructive to consider why, for each given piece of configuration data, it is collectéd. as it

Casestudy: fetchmail

The fetchmail program uses only two environment variahl8&RandHOMEThese variables are in
the predefined set initialized by the system; many programihese

The value oHOMBHSs used to find the dot fildetchmailrc , Which contains configuration

information in a fairly elaborate syntax obeying the shell-like lexical rules described above. This is
appropriate because, once it has been initially set up, fetchmail’'s configuration will change only rather
infrequently.

There is neither getc/fetchmailrc nor any other system-wide file specific to fetchmail.

Normally such files are used to express site-wide configuration that’s not specific to an individual

user. Fetchmail does use a small set of properties with this kind of scope — specifically, the name of
the local postmaster, and a few switches and values describing the local mail transport setup (such as
the port number of the local SMTP listener). In practice, however, these are seldom changed from their
compiled-in default values — and when they are, they tend to be changed in user-specific ways. Thus,
there has been no demand for a system-wide fetchmail run cfietrol

Fetchmail can retrieve host/login/password triples from a .netrc file. Thus, it gets authenticator
information in the least surprisingay.

Fetchmail has an elaborate set of command-line options, which nearly but do not entirely replicate
what the .fetchmailrc can express. The set was not originally large, but grew over time as new
constructs were added to the .fetchmailrc minilanguage and parallel command-line options for them



got added more or lessflexively.

The intent of supporting all these options was to make fetchmail easier to script by allowing users to
override bits of the fetchmailrc from the comand line, but it turns out that outside of a few options like
—fetchall and —verbose there is little demand for this — and none that can’t be satified with a
shellscript that creates a run-control file on the fly and then feeds it to fetchmail usingptienf

Thus, most of the command-line options are never used, and in retrospect including them was
probably a mistake; they bulk up the fetchmail code a bit without accomplishing anything very useful.
There is a lesson here; had the author thought carefully enough about fetchmail’s usage pattern and
been a little less ad-hoc about adding features, the extra complexity might haeedided.

Casestudy: the XFree86server

X server§4 have a forbiddingly complex interface to their environment. This is not surprising, as
they have to deal with a wide range of complex hardware and user preferences. The environment
gueries common to all X servers, documented on the X(1) and Xserver(1) pages, therefore make a
useful example for study. The implementation we examine here is XFree86, the X implementation
used undetinux and several other open-soukdeixes.

At startup, the XFree86 server examines a system-wide run control file; the exact pathname varies
between X builds on different platforms, but the basename is XF86Config. The XF86Config file has a
shell-like syntax as described abdgamplel0.3is a sample section of an XConfitg:

Example 10.2. X configurationexample
# The 16-color VGA server

Section "Screen”
Driver  "vgal6"
Device  "Generic VGA"
Monitor "LCD Panel 1024x768"
Subsection "Display"
Modes "640x480" "800x600"
ViewPort 00
EndSubsection
EndSection

The XFConfig file describes the host machine’s display hardware (graphics card, monitor), keyboard,
and pointing device (mouse/trackball/glidepad). It's appropriate for this information to live in a
system-wide run control file, because it applies to all usersitg.a

Once X has acquired its hardware configuration from the run control file, it uses the value of the
environment variablelOMEo find two dotfiles in the calling user's home directory. These files are
Xdefaults  and.xinitrc 9.

The.Xdefaults file specifies per-user, application-specific resources relevant to X (trivial

examples of these might include font and foreground/background colors for a terminal emulator). The
phrase ‘relevant to X’ indicates a design problem, however. Collecting all these resource declarations
in one place is convenient for inspecting and editing them, but it is not always clear what should be
declared inXdefaults and what belongs in an application-specific dotfile. Kmatrc file

specifies the commands that should be run to initialize the user’s X desktop just after server startup.
These programs will almost always include a window or sess@rager.



X servers have a large set of command-line options. Some of these override the XF86Config, such as
the -fp (font path) option. Some are intended to help track server bugs, such as the -audit option; if
these are used at all, they are likely to vary quite frequently between test runs and are therefore poor
candidates to be included in a run control file. A very important option is the one that sets the server’s
display number. Multiple servers or server instances may run on a host provided each has a unique
display number, but all share the same run control file(s); thus, the display number cannot be derived
solely from thoséiles.

™4 Confusingly, X ‘servers’ run on client machines — they exist to serve requests to interact with the
client machine’s display device. The applications sending those requests to the X server are called ‘X
clients’, even though they may be running on a server machine. And no, there is no way to explain this
inverted terminology that is nobnfusing.

B9 The xinitrc is analogous to a Startup folder on Windows and other opesytitgms.



On breaking theserules

The conventions described in this chapter are not absolute, but violating them will increase friction
costs for users and developers in the future. Break them if you must — but be sure you know exactly

why you are doing so before you io



Chapter 11.Interfaces

User-I nterface Patterns In The Unix Environment
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All our knowledge has its origins in operceptions.
--Leonardo DaVinci

The interface of a program is the sum of the ways that it communicates with human users and other
programs. Under Unix, programs normally get input or commands from the folleaimges:

® Environment variables (name to string-value associations set up by the calling user from his/her
shell, or by a callingprogram).

® Switches and values passed to the program on the command line that imhvoked

e Files and devices in known locations (such as a run-control file in the calling user's home
directory, or a data file name passed to or computed hyrtigeam).

e Data and commands presented on the program'’s staingaitd
® |Inputs passed via IPC, such as X server events and natvesdages.

Programs can emit results in all the same ways (with output going to standard output), though doing so
by setting environment variables is unusual for interagregrams.



Some Unix programs are graphical, some have screen-oriented character interfaces, and some use a
starkly simple text-filter design unchanged from the days of mechanical teletypes. To the uninitiated, it
is often far from obvious why any given program uses the style it does — or, indeed, why Unix
supports such a plethora of interface styleslat

In Chapte[10 (Configuration) we discussed the use of environment variables, switches, run control
files and other parts of start-up-time interfaces. In this chapter, we’ll untangle the history and explain
the pragmatics of Unix interfaces after startup time. Because interface code normally consumes 40%
or more of development time, knowing good design patterns is especially important here in order to
avoid a lot of false starts and time-intengigerites.

Unix has several competing interface styles. All are still alive for a reason; they’re optimized for
different situations. By understanding the fit between task and interface style, you will learn how to
choose the right styles for the jobs you neediao



Applying the Rule of LeastSurprise

In Chaptefl (Philosophy}) we observed (and at the beginning of ChapidConfiguration)we
reiterated) that the most important principle of interface design is the Rule of Least Surprise. In the rest

of Chapte[10 (Configuration)we developed this into guidelines for handling startup-environment
gueries and command-line options. Before tackling the large issue of how to choose an interface style,
let’s take a look at some implications of the Rule for interfaces stgup.

One implication is: wherever possible, allow the user to delegate interface functions to a familiar
program. We already observed in Chat@ultiprogramming|that, if your program requires the

user to edit significant amounts of text, you should write it to call an editor (specifiable by the user)
rather than building in your own integrated editor. This will enableisee who knows his or her
preferences better than you, to choose his or her least surpilisinmtive.

Elsewhere in this book we have advocated symbiosis and delegation as tactics for promoting code
re-use and minimizing complexity. The point here is that when the user can intercept the delegation,
and direct it to an agent of the user’'s own choice, these techniques become not merely economical for
the developer but actively empowering to tiser.

Further: when you can’t delegate, emulate. The purpose of the Rule of Least Surprise is to reduce the
amount of complexity the user must absorb to use an interface. Continuing the editor example, this
means that if you must implement an embedded editor, it's best if the editor commands are a subset of
those for a well-known general-purpasditor.

Under the Netscape and Mozilla Web browsers, for example, fill-in fields in forms recognize a subset
of the default bindings for the Emacs editor. Control-A goes to start of line, Control-D deletes the next
character, and so forth. This choice helps people who know Emacs, and leaves others no worse off
than an arbitrary, idiosyncratic command set would have. The only way it could have been bettered
was by choosing key bindings associated with some editor significantly more widely used than Emacs;
and among Netscape’s original user population there was nasunmhl.

These principles can be applied in many other areas of interface design. They suggest, for example,
that it is deeply foolish to create novel document formats for an on-line help system when users are
comfortable with an HTML web browser. Or even that if you are designing an arcade-style game, it is
wise to look at the gesture sets of previous games to see if you can give new users a feeling of comfort
by allowing them to transfer joystick skills learned in otfy@mes.



History of interface design ornJnix

Unix predates the modern graphics-intensive style of software interface design. For over a decade after
the first Unix in 1969, command-line interfaces (CLIs) on teletypes and dumb text-mode terminals

were the norm. Most of the basic Unix toolset (programs like Is(1), cat(1), and grep(1)) still reflect this
heritage.

Gradually, after 1980, Unix evolved support for screen-painting on smart terminals. Programs began to
mix command-line and visual interfaces, with common commands often bound to keystrokes that
would not be echoed to the screen. Some of the early programs written in this style (often called
‘curses’ programs, after the screen-painting cursor-control library normally used to implement them,

or ‘roguelike’ after the first application to use curses) are still used today; notable examples include the
dungeon-crawling game rogue(1), thél) text editor, and (from a few years later) the elm(1) mailer

and its modern descendanutt(1).

A few years later in the mid-1980s, the computing world as a whole began to assimilate the results of
the pioneering work on graphical user interfaces (GUIs) that had been going on at Xerox’s Palo Alto
Research Center since the early 1970s. On personal computers, th®XBOwork inspired the

Apple Macintosh interface and through that the design of Micrdgoftlows.Unix’s adaptation of

these ideas took a rather more compliciaith.

Around 1987 the X windowystemoutcompeted several early contenders and prototype efforts to
become the standard graphical-interface facility for Unix. Whether this was a good or a bad thing has
remained a topic of debate ever since; some of the other contenders (notably Sun’s Network Window
System oNeWS)were arguably rather more powerful and elegant. X, however, had one overriding
virtue; it was open source. The code had been developed at MIT by a research group more interested
in exploring the problem space than in creating a product, and it remained freely redistributable and
modifiable. It was thus able to attract support from a wide range of developers and sponsoring
corporations who would have been reluctant to line up behind a single vendor’s closed product. (This,
of course, prefigured an important theme in the breakout of the Linux opesgsitegnten years

later.)

The designers of X made a decision early on that X would support “mechanism, not policy”. Their
objective was to make X as flexible and portable across platforms as possible, while putting as few
constraints on the look and feel of X programs as they could manage. Look and feel, they decided,
would be handled by ‘toolkits’ — libraries calling X services linked to user programs. X would also be
designed to support multiple windananager®9 , and not require a window manager to have any
special privileges or uniquely close integration with Xiachinery.

This approach was the polar opposite of that taken by the Macintosh and Windows commercial
products, which enforced particular look-and-feel policies by designing them right into the system.

The difference in approach ensured that X would have a long-run evolutionary advantage by

remaining adaptable as new discoveries were made about the human factors in interface design — but
it also assured that the X world would be divided by multiple toolkits, a profusion of window

managers, and many experiments in look feed

Since the mid-1990s X has become ubiquitous even on the lowest-end personal Unix machines. Use of
Unix from text-mode terminals, as opposed to graphics-capable computer consoles, has sharply
declined and seems headed for extinction. Accordingly, the use of curses-style interfaces for new
applications is also in decline; most new applications that would formerly have been designed in that
style now use an X toolkit. It is instructive to note, however, that Unix’s older CLI design tradition is



still quite vigorous and successfully competes with X in nanegs.

It is also, however, instructive to note that there are a few specific application areas in which
curses-style (or ‘roguelike’) character-cell interfaces remain the norm — especially text editors and
interactive communications programs such as mailers, newsreaders, aclétntsat

For historical reasons, then, there are a wide range of interface styles in Unix programs. Line-oriented,
character-cell screen-oriented, and X-based — with the X-based world somewhat balkanized by the
competition between multiple X toolkits and windovanagers.

P9 A window manager handles associations between windows on the screen and running tasks.
Window managers handle behaviors like title bars, placement, minimizing, maximizing, moving,
resizing, and shadingindows.



The right style for the right job

All of these styles survive because they are adapted for different jobs. When making design decisions
about a project, it's important to know how to pick a style (or combine styles) that will be appropriate
to your application and your usgopulation.

There are five basic metrics we will use to categorize interface styles. Thmgynargion

expressivenesease transparencyandscriptability. We've already used some of these terms earlier in
this book in ways that were preparation for defining them here. They are comparatives, not absolutes;
they have to be evaluated with respect to a particular problem domain and with some knowledge of the
users’ skill base. Nevertheless, they will help organize our thinking in wsafsl.

A program interface is ‘concise’ when the length and complexity of actions required to do a
transaction with it has a low upper bound (the measurement might be in keystrokes, gestures, or
seconds of attention required). Concise interfaces pack a lot of leverage into a relatively few bits or
statechanges.

Interfaces are ‘expressive’ when they can readily be used to command a wide variety of actions. The
mostexpressive interfaces can command combinations of actions not anticipated by the designer of the
program, but which nevertheless give the user useful and conséstelts.

The difference between concision and expressiveness is an important one. Consider two different ways
of entering text: a keyboard, or picking characters from a screen display with mouse clicks. These have
equal expressiveness, but the keyboard is more concise (as we can easily verify by comparing average
text-entry speeds). On the other hand, consider two dialects of the same programming language, one
with a complex-number type and one not. Within the problem domain they have in common, their
concision will be identical; but for a mathematician or electrical engineer, the dialect with complex
numbers will be much momexpressive.

The ‘ease’ of an interface is inversely proportional to the mnemonic load it puts on the user — how
many things (commands, gestures, primitive concepts) the user has to remember specifically to
support using that interface. Programming languages have a very high mnemonic load and low ease;
menus and well-labeled on-screen buttonsemgler.

Recall that we devoted an entire earlier chapter to ‘transparency’. In that chapter we touched on the
idea of interface transparency, and gavgAtndacity audiceditofone superb example of it. We were

then more interested in transparency of a different kind, one that relates to the structure of code rather
than of interfaces. We therefore described Ul transparency in terms of its effect (nothing obtrudes
between the user and the problem domain) rather than its causes. Now it's time to gpecitce

The ‘transparency’ of an interface is how few things the user has to remember about the state of his
problem, his data, or his program whilgingtheinterface.An interface has high transparency when it
naturally presents intermediate results, useful feedback, and error notifications on the effects of a
user’s actions. So-called WYSIWYG (What You See Is What You Get) interfaces are intended to
maximize transparency, but sometimes backfire — especially by presenting an over-simplified view of
thedomain.

The related concept of discoverability applies to interface design, as well. A discoverable interface
provides the user with assistance in learning it, such as greeting message pointing to context-sensitive
help, or explanatory balloon popups. Though discoverability has to be implemented in rather different
ways for each of the interface styles we shall consider, the degree to which it is achievable is largely



independent of interface style. Thus, we shall not use it as a metric disthussion.

The ‘scriptability’ of an interface is the ease with which it can be manipulated by other programs (e.g.
via the IPC mechanisms discussed in Chap{®tultiprogramming). Scriptable programs are readily
usable as components by other programs, reducing the need for costly custom coding and making it
relatively easy to automate repetithasks.

That last point — automating repetitive tasks — deserves more attention than it usually gets. Unix
programmers, administrators, and users develop a habit of thinking through the routine procedures
they use, then packaging them so they no longer have to manually execute or even think about them
any more. This habit depends on scriptable interfaces. It is a quiet but tremendous productivity booster
not available in most other softwagavironments.

It will be useful to bear in mind that humans and other computer programs have very different cost
functions with respect to these metrics. So do novice and expert human users in a particular problem
domain. We’'ll explore how the tradeoffs between them change for differemasdations.



Tradeoffs between CLI and visualinterfaces

The CLI style of early Unix has retained its utility long after the demise of teletypes for two reasons.
One is that command-line and command-language interfaces are usually more concise and often more
expressive than visual interfaces, especially for complex tasks. The other is that CLI interfaces are
highly scriptable — they readily support the combining of programs, as we discussed in detail in
Chapte(6 (Multiprogramming)

The disadvantage of the CLI style, of course, is that it almost always has high mnemonic load, and
usually has loviransparencyMost people (especially nontechnical end users) find such interfaces
relatively cryptic and difficult tdearn.

Database queries make an excellent example of the tradeoff. Neither keystroke commands to a
full-screen character interface nor GUI gestures on a graphic display can express typical actions in the
problem domain as expressively or concisely as typing SQL direct to a server. And it is certainly easier
to make a client program utter SQL queries than it would be to have it simulate a user cligking a

On the other hand, many non-technical database users are so resistant to having to remember SQL
syntax that they prefer a less concise and less expressive full-screeniote@tite.

SQL is a good example for illustrating another point. The most powerful CLIs are not ad-hoc
collections of commands, but imperative minilanguages designed along the lines we described in
Chaptef8 (Minilanguageg) These minilanguages are the highest-power, highest-complexity end of the
CLI spectrum; they maximize expressiveness, but minimize ease. They're difficult to use and
generally need to be discreetly veiled from ordinary end-users, but unbeatable when the capability and
flexibility of the interface is the most important thing. When properly designed, they also score high

on scriptability.

Some applications, unlike database queries, are naturally visual. Paint programs, web browsers, and
presentation software make three excellent examples. What these application domains have in
common is that (a) transparency is extremely valuable, and (b) the primitive actions in the problem
domain are themselves visual: “draw this”, “show me what I'm pointing at”, “puh#is’.

In Chapte[7 (Transparencyyve looked at the Audacity sound file editor. Its interface design succeeds
because it does a particularly clean job of mapping its audio application domain onto a simple set of
visual representations. It does this by thoroughly following through the consequences of a single
translation — sounds to waveform images. The visual operations are not a mere grab-bag of low-level
tweaks, they are all tied to thiaanslation.

In applications that aneot naturally visual, however, visual interfaces are most appropriate for simple
one-off or infrequent tasks performed by novice users (a point the database example illustrates).

Resistance to CLI interfaces tends to decrease as users become more expert. In many problem
domains, users (especiafhequentusers) reach a crossover point at which the concision and
expressiveness of CLI becomes more valuable than avoiding its mnemonic load. Thus, for example,
computing novices prefer the ease of GUI desktops, but experienced users often gradually discover
that they prefer typing commands telzll.

CLlIs also tend to gain utility as problems scale up and involve more in the way of canned, procedural
and repetitive actions. Thus, for example, a WYSIWIG desktop-publishing program is usually the
easiest route to composing relatively small and unstructured documents such as business letters. But
for complex book-sized documents that are assembled from sections and may require many global



format changes or structural manipulation during compaosition, a minilanguage formatter such as troff,
Tex, or some XML-markuprocessois usually a more effective choice (see Chdp&r
[(Documentationjor more discussion of thisadeoff).

Even in domains that are naturally visual, scaling up the problem size tends to tilt the tradeoff towards
a CLI. If you need to fetch and save one web page from a given URL, point and click (or type and
click) is fine. But for web forms, you're going to use a keyboard. And if you need to fetch and save the
pages corresponding to a given list of fifty URLSs, a CLI client that can read URLs from standard input
or the command line can save you a lot of unnecessatign.

As another example, consider modifying the color table in a graphic image. If you want to change one
color (say, to lighten it by an amount you will only know is right when you see it) a visual dialogue
with a color-picker widget is almost mandatory. But suppose you need to replace the entire table with
a set of specified RGB values, or to create and index large numbers of thumbnails. These are
operations that GUIs usually lack the expressive power to specify. Even when they do, invoking a
properly-designed CLI or filter program will do the job far mooacisely.

Finally (as we observed earlier on) CLIs are important in order to facilitate using programs from other
programs. A GUI graphics editor thean handle making a batch of thumbnails for a list of files

probably does it with a plugin written in a scripting language, calling an internal CLI of the graphics
editor (as in th&IMP’sscript-fufacility). Unix environments bring the value of CLlIs into sharper

relief precisely because their IPC facilities are rich, have low overhead, and are easily accessible from
userprograms.

The explosion of interest in GUIs since 1984 has had the unfortunate effect of obscuring the virtues of
CLlIs. The design of consumer software, in particular, has become heavily skewed towards GUIs.
While this is a good choice for the novice and casual users that constitute most of the consumer
market, it also exacts hidden costs on more expert users as they run up against the expressiveness
limits of GUIs — costs which steadily increase as they take on more demanding problems. Most of
these costs derive from the fact that GUIs are simply not scriptable atealéryinteraction with

them has to beuman-driven.

Gentner & Nielsen sum up the tradeoff very well'lre Anti-Madnterfacg[Gentner&Nielserj]

“[Visual interfaces] work well for simple actions with a small number of objects, but as the number of
actions or objects increases, direct manipulation quickly becomes repetitive drudgery. The dark side of
a direct manipulation interface is that you have to manipulate everything. Instead of an executive who
gives high-level instructions, the user is reduced to an assembly-line worker who must carry out the
same task over and over.” Noted science-fiction writer Neal Stephenson made the same point, less
directly but more entertainingly, in his brilliant and discursive efsdye Beginning Was The

Command.ine[Stephensoh]

For the long haul, then — for serving both casual and expert users, for cooperating with other
computer programs, and whether the problem domain is naturally visual or not — supbpotth for

CLI and visual interfaces is important. Unix’s history positions it well to meet both sets of needs. After
presenting an indicative case study, we will examine the characteristic design patterns that the Unix
tradition has evolved to mettem.




Casestudy: Two ways to write a calculatorprogram

To be more concrete, let us contrast how the GUI and CLI styles can be usefully applied to the design
of a simple interactive program; a desk calculator. Our examples for contrast are dc(1)/bc(1) and
xcalc(1).

The original Unix desk calculator program, first distributed with Version 7, was dc(1) — a
reverse-Polish-notation calculator that could handle unlimited-precision arithmetic. Later, an algebraic
(infix notation) calculator language, bc(1), was implemented on top of dc (we used the relationship
between these programs as a case study in Cl@@edtiprogramming) and again in Chapt@
[(Minilanguageg) Both of these programs use a CLI. You type an expression on standard input, you
press enter, and the value of the expression is printed on staudand

The xcalc(1) program, on the other hand, visually simulates a simple calculator, with clickable buttons
and a calculator-styldisplay.
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The xcalc(1) approach is simpler to describe because it mimics an interface with which novice users
will be familiar; the man page says, in fact, “The numbered keys, the +/- key, and the +, -, *, /, and =
keys all do exactly what you would expect them to.” All the capabilities of the program are conveyed
by the visible button labels. This is the Rule of Least Surprise in its strongest form, and a real
advantage for infrequent and novice users who will never have to read a man page tproggéahe

However, xcalc(1) also inherits the almost comptete-transparencgnd of a calculator; when

evaluating a complex expression, you don’t get to see and sanity-check your keystrokes — which can
be a problem if, say, you misplace a decimal point in an expression like (2.51 + 4.6) * 0.3. There’s no
history, so you can’t check. You'll get a result, but it won’t be the result of the calculation you
intended.



With the dc(1) and bc(1) programs, on the other hand, you can edit mistakes out of the expression as
you build it. Their interface is more transparent, because you can see the calculation that is being
performed at every stage. It is more expressive because the dc/bc interpreter, not being limited to what
fits on a reasonably-sized visual mockup of a calculator, can include a much larger repertoire of
functions (and facilities such as if/then/else, stored variables, and iteration). It also incurs, of course, a
higher mnemonitoad.

Concision is more of a toss-up; good typists will find the CLI more concise, while poor ones may find
it faster to point and click. Scriptability is not; dc/bc can easily be used as a filter, but xcalc can’'t be
scripted aall.

The tradeoff between ease for novices and utility for expert users is very clear here. For casual use in
situations where a mental-arithmetic error check is not hard, xcalc wins. For more complex
calculations where the steps must not only be correct but masteht® be correct, or in which they

are most conveniently generated by another program, dinisc



Unix interface designpatterns

In the Unix tradition, the tradeoffs we described above are met by well-established interface design
patterns. Here is a bestiary of these patterns, with analyses and examples. We'll follow it with a
discussion of how to appthem.

Note that this bestiary does not include GUI design patterns (though it includes a design pattern that
can use a GUI as a component). There are no design patterns in graphical user interfaces themselves
that are specifically native to Unix. A promising beginning of a discussion of GUI design patterns in
general can be found Bxperiences — A Pattern Language for User InterfaesigfiCoram&Lee]

Also note that programs may have modes that fit more than one interface pattern. A program that has a
compiler-like interface, for example, may behave as a filter when no file arguments are specified on
the command line (many format converters behavethiisd.

The filter pattern

The interface-design pattern most classically associated with UnixfiteheA filter program takes

data on standard input, transforms it in some fashion, and sends the result to standard output. Filters
are not interactive; they may query their startup environment, and are typically controlled by
command-line options, but they do not require feedback or commands from the user in their input
stream.

The classic examples of filters are tr(1) and grep(1). The tr(1) program is a utility which translates data
on standard input to results on standard output using a translation specification given on the command
line. The grep(1) program selects lines from standard input according to a match expression specified
on the command line; the resulting selected lines go to standard output. A third is the sort(1) utility,
which sorts lines in input according to criteria specified on the command line and issues the sorted
result to standardutput.

Both grep(1) and sort(1) (but not tr(1)) can alternatively take data input from a file (or files) named on
the command line, in which case they do not read standard input and act instead as though that input
were the concatenation of the named files read in the order they appear. (In this case it is also expected
that specifying “-” as a filename on the command line will direct the program explicitly to read from
standard input.) The archetype of such ‘catlike’ filters is cat(1), and filters are expected to behave this
way unless there are application-specific reasons to treat files named on the comnifidriamgly.

When designing filters, it is well to bear in mind two rules from Chéglp(Ehilosophy)

1. Remember Postel’'s Prescription: Be generous in what you accept, rigorous in wieahiyzou
That is, try to accept as loose and sloppy an input format as you can and emit as well-structured
and tight an input format as you can. Doing the former reduces the odds that the filter will be
brittle in the face of unexpected inputs, and break in someone’s hand (or in the middle of
someone’s toolchain). Doing the latter increases the odds that your filter will someday be useful
as an input to othgarograms.

2. When filtering, never throw away information you don’t need his, too, increases the odds that
your filter will someday be useful as an input to other programs. Information you discard is
information that no later stage in a pipeline oan.



The term “filter” for this pattern is long-established Ujargon.

Some programs have interface design patterns like the filter, but even simpler (and, importantly, even
easier to script). They are cantrips, emitters, sankis.

The cantrip pattern

The cantrip interface design pattern is the simplest of all. No input, no output, just an invocation and a
result. A cantrip’s behavior is controlled only by startup conditions. Programs don’t get any more
scriptable thathis.

Thus, the cantrip design pattern is an excellent default when the program doesn’t require any run-time
interaction with the user other than fairly simple setup of initial conditions or camfivaination.

Indeed, because scriptability is important, Unix designers learn to resist the temptation to write more
interactive programs when cantrips will do. A collection of cantrips can always be driven from an
interactive wrapper or shglfogram,but the reverse is not true. Good style therefore demands that you
try to find a cantrip design for your tool before giving in to the temptation to write an interactive
interface that will be harder to script. And when interactivity seems necessary, remember the
characteristic Unix design pattern of separating the engine from the interface; often, the right thing is
an interactive wrapper written in some scriptiagguagethatalls a cantrip to do the reabrk.

The console utility clear(1), which simply clears your screen, is the purest possible cantrip; it doesn’t
even take command-line options. Other classic simple examples are rm(1) and touch(1). The startx(1)
program used to launch X is a complex example, typical of a whole class of daemon-summoning
cantrips.

This interface design pattern, though fairly common, has not traditionally been named; the term
“cantrip” is an invention of thauthor.

The emitter pattern

An emitteris a filter-like program that requires no input; its output is controlled only by startup
conditions. The paradigmatic example would be Is(1), the Unix directory lister. Other classic examples
include who(1) anghs(1).

Under Unix, report generators of all kinds tend strongly to obey the emitter pattern, so that their output
can be filtered with standatdols.

This interface design pattern, though fairly common, has not traditionally been named; the term
“emitter” is an appropriation of the author, from phygargon.

The absorber pattern

An absorberis a filter-like program that consumes standard input but emits nothing to standard output
(such a program may also be calleslrdk or spongé. Again, its actions on the input data are
controlled only by startuponditions.

This interface pattern is unusual, and there are few well-known examples. One is Ipr(1), the Unix print
spooler. It will queue text passed to it on standard input for printing. Like many absorber programs, it
will also process files named to it on the command line. Another example is mail(1) in its



mail-sendingmode.

Many programs that might appear at first glance to be absorbers take control information as well as
data on standard input and are actually instances of something like the ed patiseio(gee

Traditionally, the termsinkandspongeare unusual but not unknown (the former is usually applied
specifically to program s like sort(1) that have to read their entire input before they can process anty of
it). The term “absorber” is an appropriation of the author, from phjaigen.

The compiler pattern

Compiler-like programs use neither standard output nor standard input; they may issue error messages
to standard error, however. Instead, a compilerlike program takes file or resource names from the
command line, transforms the names of those resources in some way, and emits output under the
transformed names. Like cantrips, compiler-like programs do not require user interaction after startup
time.

This pattern is so named because its paradigm 8 ttwampiler, cc(1) (or, unddrinux and many
other modern Unixes, gcc(1)). But it is also widely used for programs that do (for example) graphics
file conversions ocompression/decompression.

A good example is the gif2png(1) program used to convert GIF (Graphic Interchange Format) to PNG
(Portable NetworlGraphics).F4 . A good example of the latter are the gzip(1) and gunzip(1) GNU
compression utilities, almost certainly shipped with your Wyistem.

In general, the compiler interface design pattern is a good model when your program often needs to
operate on multiple named resources and can be written to have low interactivity (with its control
information supplied at startup time). Compiler-like programs are resafilptable.

The term “compiler-like interface” for this pattern is well-understood in the tommunity.

The edpattern

All the previous patterns have very low interactivity; they use only control information passed in at
startup time, and separate from the data. Many programs, of course, need to be driven by a continuing
dialog with the user after starttime.

In the Unix tradition, the simplest interactive design pattern is exemplified by ed(1), the Unix line
editor. Other classic examples of this pattern include ftp(1) and sh(1), the Unix shell. The ed(1)
program takes a filename argument; it modifies that file. On its input, it accepts command lines. Some
of the commands result in output to standard output, which is intended to be seen immediately by the
user as part of his/her dialog with giegram.

Many browser- and editor-like programs under Unix obey this pattern, even when the named resource
they edit is something other than a text file. Consider gdb(1), the GNU symbolic debugger, as an
example.

Programs obeying the ed interface design pattern are not quite so scriptable as would be the simpler
interface types resembling filters. You can feed them commands on standard input, but it is trickier to
generate sequences of commands (and interpret any output they might ship back) than it is to just set
environment variables and command-line options. Programs with this interface pattern require a
protocol, and a corresponding state machine in the calling process. This raises the problems we noted



in Chaptel6 (Multiprogramming)during the discussion of slave processtrol.

Nevertheless, this is the simplest and most scriptable pattern that supports fully interactive programs.
Accordingly, it is still quite useful as a component of the “separated engine and interface” pattern
we’ll describebelow.

The rogue pattern

The rogue pattern is so named because its first example was the dungeon-crawling game rogue(1)
underBSD; the adjective "roguelike” for this pattern is widely recognized in Unix tradition. Roguelike
programs are designed to be run on a system console, an X terminal emulator, or a video display
terminal. They use the full screen and support a visual interface style, but with character-cell display
rather than graphics andreouse.

Figure 11.1. Screen shot of the original Rogugame
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Commands are typically single keystrokes not echoed to the user (as opposed to the command lines of
the ed pattern), though some will open a command window (often, though not always, the last line of
the screen) on which more elaborate invocations can be typed. The command architecture often makes
heavy use of the arrow keys to select screen locations or lines on whijndrate.

There is also a tendency for programs written in this pattern to model themselves ori(&ixtoer

emacs(1) and (obeying the Rule of Least Surprise) use their command sequences for common
operations such as getting help or terminating the program. Thus, for example, one can expect one of
the commands ‘X', ‘q’, or ‘C-x C-C’ to terminate a program written to plaigern.

Some other interface tropes associated with this pattern include: (a) the use of one-item-per-line
menus, with the currently-selected item indicated by bold or reverse-video highlighting, and (b) ‘mode
lines’ — program status summaries carried on a highlighted screen line, often near the bottom or at the
top of thescreen.



Programs obeying this pattern are legion. The vi(1) text editor in all its variants, and the emacs(1)
editor; elIm(1), pine(1)nutt(1),and most other Unix mail readers; tin(1), slrn(1), and dilsenet
newsreaders; the lynx(1) web browser; and many others. Most Unix programmers spend most of their
time driving programs with interfaces likieese.

The roguelike pattern is hard to script; indeed this is seldom even attempted. Among other things, this
pattern uses raw-mode character-by-character input, which is inconvenient for scripting. It's also quite
hard to interpret the output programmatically, because it usually consists of sequences of incremental
screen-paintingctions.

Nor does this pattern have the visual slickness of a mouse-driven full GUI. While the point of using
the full screen interface is to support simple kinds of direct-manipulation and menu interfaces,
roguelike programs still require users to learn a command repertoire. Indeed, interfaces built on the
rogue pattern show a tendency to degenerate into a sort of cluttered wilderness of modes and
meta-shift-cokebottle commands that only hard-¢t@ekerscan love. It would seem that this pattern

has the worst of both worlds, being neither scriptable nor conforming to recent fashions in design for
end-users.

But there must be some value in this pattern. Roguelike mailers, newsreaders, editors, and other
programs remain extremely popular even among people who invariably run them through terminal
emulators on an X display that supports GUI competitors. Moreover, the roguelike pattern is so
pervasive that under Unix even GUI programs often emulate it, adding mouse and graphics support to
a command and display interface that still looks rather roguelike. The X mode of emacs(1), and the
xchat(1) client are good examples of such adaptation. What accounts for the pattern’s continuing
popularity?

Efficiency, and perceived efficiency, seem to be important factors. Roguelike programs tend to be fast
and lightweight relative to their nearest GUI competitors. For startup and runtime speed, running a
roguelike program in an Xterm may be preferable to invoking a GUI that will chew up substantial
resources setting up its displays and respond more slowly afterwards. Also, programs with a roguelike
design pattern can be used over telnet links or low-speed dialup lines where X i@pinban

Touch-typists often like roguelike programs because they can avoid taking their hands off the
keyboard to move a mouse. Given a choice, touch-typists will prefer interfaces that minimize
keystrokes far off the home row; this may account for a significant percentage of pa()lsrity.

Perhaps more importantly, roguelike interfaces are predictable and sparing in their use of screen real
estate on an X display; they do not clutter the display with multiple windows, frame widgets, dialog
boxes, or other GUI impedimenta. This makes the pattern well suited for use in programs that must
frequently share the user’s attention with other programs (as is especially the case with editors,
mailers, newsreaders, chat clients, and other communigatignams).

Finally (and probably most importantly) the roguelike pattern tends to appeal more than GUIs to
people who value the concision and expressiveness of a command set enough to tolerate the added
mnemonic load. We saw above that there are good reasons for this preference to become more
common as task complexity, use frequency, and user experience rise. The roguelike pattern meets this
preference while also supporting GUI-like elements of direct manipulation as an ed-pattern program
cannot. Thus, far from having only the worst of both worlds, the roguelike interface design pattern can
capture some of theest.



The ‘separated engine and interfacepattern

In Chapte[6 (Multiprogramming)we argued against building monster single-process monoliths, and

that it is often possible to lower the global complexity of programs by splitting them into

communicating pieces. In the Unix world, this tactic is frequently applied by separating the ‘engine’

part of the program (core algorithms and logic specific to its application domain) from the ‘interface’

part (which accepts user commands, displays results, and may provide services such as interactive help
or command history). In fact, this separated-engine-and-interface pattern is probably the one most
characteristic interface design patterrJoiix.

Owen Taylor, maintainer of the GTK+ library widely used for writing user interfaces under X,
beautifully brings out the engineering benefits of this kind of partitioning at the end of Hi&/hygte
[GTK_MODULES is not a securitigolg he finishes by writing "[T]he secure setuid program is a 500

line program that does only what it needs to, rather than a 500,000 line library whose essential task is
userinterfaces."

This is not a new idea. XerdXARC'searly research into graphical user interfaces led them to propose
the “model-view-controller’pattern as an archetype fatls.

e The “model” is what in the Unix world is usually called an “engine”. The model contains the
domain-specific data structures and logic for your application. Database servers are archetypal
examples ofnodels.

® The “view” part is what renders your domain objects into a visible form. In a really
well-separated model/view/controller application, the view component is notified of updates to
the model and responds on its own, rather than being driven synchronously by the controller or by
explicit requests for eefresh.

® The “controller” processes user requests and passes them as commands to the model.

In practice, the view and controller parts tend to be more closely bound together than either is to the
model. Most GUIs, for example, combine view and controller behavior. They tend to be separated
only when the application demands multiple views ofrtioelel.

Under Unix, application of the model/view/controller pattern is far more common than elsewhere
precisely because there is a strong “do one thing well” tradition, and IPC methods are both easy and
flexible.

An especially powerful form of this technique couples a policy interface (often a GUI combining view
and controller functions) with an engine (model) that contains an interpreter for a domain-specific
language. We examined this pattern in Cha®{dinilanguages)focusing on minilanguage design;

now it's time to look at the diferent ways that such engines can form components of larger systems of
code.

There are several major variants of thédgtern.

Configurator/actor pair

In a configurator/actor pair, the interface part is used to control the startup environment of a filter or
daemon-like program which then runs without requiring aeermands.
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The programgetchmail(1)and fetchmailconf(1) (which we've already used as case studies in
discoverabilityandlata-driven programming and will encounter again as language case studies in
Chaptefl2 (Languaged)are a good example of a configurator/actor pair. Fetchmailconf is the
interactive dotfile configurator that ships wigtchmail. Fetchmailconf can also serve as a GUI
wrapper that runs fetchmail in either foreground or backgroundk.

This design pattern enables both fetchmail and fetchmailconf to specialize in what they do well, and
indeed to be written in different languages appropriate to their task domains. Fetchmail, which usually
runs in background as a daemon, need not be bloated with GUI code. Conversely, fetchmailconf can
specialize in elaborate GUIness without exacting size and complexity costs from fetchmail. Finally,
because the information channels between them are narrow and well-defined, it remains possible to
drive fetchmail from the command line and from scripts other fifihmailconf.

The term “configurator/actor” is an invention of thethor.

Spooler/daemonpair

A slight variant of the configurator/actor pair can be useful in situations that require serialized access
to a shared resource in a batch mode; that is, there is a well-defined job stream or sequence of requests
which require some shared resource, but no individual job requiresigsaction.

In this spooler/daemon pattern, the spooler or front end simply drops job requests and data in a spool
area. The job requests and data are simply files; the spool area is typically just a directory. The
location of the directory and the format of the job requests are agreed on by the spodéemanial

The daemon runs forever in background, polling the spool directory, looking there for work to do.
When it finds a job request, it tries to process the associated data. If it succeeds, the job request and
data are deleted out of the spacta.

The classic example of this pattern is the Unix print spooler system, Ipr(1)/lpd(1). The front end is lpr;
it simply drops files to be printed in a spool area periodically scanned by Ipd. Lpd’s job is simply to
serialize access to the printvices.

Another classic example is the pair at(1)/atd(1), which is used to schedule commands for execution at
specified times. A third example, historically important though no longer in wide use, was UUCP —
the Unix-to-Unix Copy Program commonly used as a mail transport over dial-up lines before the
Internet explosion of the eark990s.

The spooler/daemon pattern remains important in mail-transport programs (which are naturally
batchy). The front ends of mail transports such as sendmail(1) and gmail(1) usually make one try at
delivering mail immediately, via SMTP over an outbound Internet connection. If that attempt fails, the
mail will fall into a spool area; a daemon version or mode of the mail transport will retry the delivery
later.

Typically, a spooler/daemon system has four parts: a job launcher, a queue lister, a job-cancellation
utility, and a spooling daemon, In fact, the presence of the first three parts is a safe clue that there is a
spooler daemon behind thesomewhere.

The terms “spooler” and “daemon” are well-established {aiyon.



Driver/engine pair

In this pattern, unlike a configurator/actor or spooler/server pair, the interface part supplies commands
to and interprets output from an engine after startup; the engine has a simpler interface pattern. The
IPC method used is an implementation detail; the engine may be a slave process of the driver (in the
sense we discussed in ChagéMultiprogramming) or they may communicate via sockets, or

shared memory, or any other IPC method. The key points are (a) the interactivity of the pair, and (b)
the ability of the engine to run standalone with its awtarface.

Such pairs are trickier to write than configurator/actor pairs because they are more tightly and
intricately coupled; the driver must have knowledge not merely about the engine’s expected startup
environment but its command set and response formaitslas

When the engine has been designed for scriptability, however, it is not uncommon for the driver part

to be written by someone other than the engine author, or for more than one driver to front-end a given
engine. An excellent example of both is provided by the programs gv(1) and ghostview(1), which are
drivers for gs(1), the Ghostscript interpreter. Ghostscript renders Postscript to various graphics formats
and lower-level printer-control languages. The gv and ghostview programs provide GUI wrappers for
Ghostscript's rather idiosyncratic invocation switches and comrsyamtdx.

Another excellent example of this pattern isxhdroast/cdrtoolscombinatiofihe cdrtools
distribution provides a program cdrecord(1) with a command-line interface. The cdrecord code
specializes in knowing everything about talking to CD-ROM hardware. Xcdroast is a GUI; it
specializes in providing a pleasant user experiencexddmast(1)program calls cdrecord(1) to do
most of itswork.
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Xcdroast also calls other CLI tools; cdda2wav(1) (a sound file converter) and mkisofs(1) (a tool for
creating ISO-9660 CD-ROM filesystem images from a list of files). The details of how these tools are
invoked are hidden from the user, who can think in terms centered on the task of making CDs rather
than having to know directly about the arcana of sound file conversion or filesystem structure. Equally
importantly, the implementors of each of these tools can concentrate on their domain-specific expertise
without having to be user-interfaegperts.

The terms “driver” and “engine” are uncommon but established in theddnixnunity.

Client/server pair

A client/server pair is like a driver/engine pair, except that the engine part is a daemon running in
background which is not expected to be run interactively, and does not have its own user interface.
Usually the daemon is designed to mediate access to some sort of shared resource — a database, or a
transaction stream, or specialized shared hardware such as a sound device. Another reason for such a
daemon may be to avoid performing expensive startup actions each time the progvakers.

Yesterday's paradigmatic example was the ftp(1)/ftpd(1) pair that implements FTP, the File Transfer
Protocol; or perhaps two instances of sendmail(1), sender in foreground and listener in background,
passing Internet email. Today’s would have to be any web-browser/web-zairver



However, this pattern is not limited to communication programs; another important case is in

databases such as the psql(1)/postmaster(1) pair. In this one, psql serializes access to a shared database
managed by the postgres daemon, passing the latter SQL requests and presenting data sent back as
responses.

These examples illustrate an important property of such pairs, which is that the cleanliness of the
protocol that serializes communication between them is all-important. If it is well-defined and
described by an open standard, it can become a tremendous opportunity for leverage by insulating
client programs from the details of how the server’s resource is managed, and allowing clients and
servers to evolve semi-independently. All separated-engine-and-interface programs potentially get this
kind of leverage from clean separation of function, but in the client/server case the payoffs for getting
it right tend to be particularly high exactly because managing shared resources is intridificaily

Message queues and pairs of namipedscan be and have been used for front-end/back-end
communication, but the benefits of being able to run the server on a different machine from the client
are so great that nowadays almost all modern client-server paif€Bgé sockets.

The CLI server pattern

It's normal in the Unix world for server processes to be invoked by harness programs such as inetd(8)

in such a way that the server sees commands on standard input and ships responses to standard output;
the harness program then takes care of ensuring that the server’s stdin and stdout are connected to a
specifiedTCP/IPservice port. One benefit of this devision of labor is that the harness program can act

as a single security gatekeeper or all of the servizgrithes.

One of the classic interface patterns is therefore a CLI server. This is a program which, when invoked

in a foreground mode, has a simple CLI interface reading from standard input and writing to standard
output. When backgrounded, the server detects this and connects its standard input and standard output
to a specified CP/IPserviceport.

In some variants of this pattern, the server backgrounds itself by default, and has to be told with a
command-line switch when it should stay in foreground. This is a detail; the essential point is that
most of the code neither knows nor cares whether it is running in foregroufCé/i@harness.

POP, IMAP, SMTP, and HTTP servers normally obey this pattern. It can be combined with any of the
server/client patterns described earlier in this chapter. An HTTP server can also act as a harness
program; the CGI scripts that supply most live content on the Web run in a special environment
provided by the server where they can take input (form arguments) from standard input, and write the
generated HTNL that is their result to standautput.

Though this pattern is quite traditional, the term “CLI server” is an invention aiutier.

Language-basednterface patterns

In Chapte[8 (Minilanguageg)ve examined domain-specific minilanguages as a means of pushing
program specification up a level, gaining flexibility, and minimizing bugs. These virtues make the
language-based CLI an important style of Unix interface — one exemplified by the Uniisdtill

The strengths of this pattern are well illustrated by the case study earlier in the chapter comparing
dc(1)/bc(1) with xcalc(1). The advantages that we observed earlier (the gain in expressiveness and
scriptability) are typical of minilanguages; they generalize to other situations in which you routinely



have to sequence complex operations in a specialized problem domain. Often, unlike the calculator
case, minilanguages also have a clear advantagmaision.

One of the most potent Unix design patterns is the combination of a GUI front end with a CLI
minilanguage back end. Well-designed examples of this type are necessarily rather complex, but often
a great deal simpler and more flexible than the amount of ad-hoc code that would be necessary to
cover even a fraction of what the minilanguage @an

This general pattern is not, of course, unique to Unix. Modern database suites everywhere normally
consist of one or more GUI front ends and report generators, all of which talk to a common back-end
using a query language such as SQL. But this pattern mainly evolved under Unix and is still much
better understood and more widely applied there ¢tegwhere.

When the front and back ends of a system fulfilling this design pattern are combined in a single
program, that program is often said to have an ‘embedded scigtipgage’In the Unix world,
Emacs is one of the best-known exemplars of this pattern; refer to our discussion of it in[€hapter
[(Minilanguageg¥or someadvantages.

The script-fu facility ofGIMP is another good example. GIMP is a powerful open-source graphics

editor. It has a GUI interface resembling that of Adobe Photoshop. Script-fu allows GIMP to be

scripted using Scheme (a dialectlLidp); scripting throughTcl, or Perlor Pythonis also available.

Programs written in any of these languages can call GIMP internals through its plugin interface. The
demonstration application for this facility is a web page which allows people to construct simple logos
and graphic buttons through a CGl interface that passes a generated Scheme program to an instance of
GIMP, and returns a finisheohage.

™4 Sources for this program, and other converters with similar interfaces, are availablgNGihe
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Applying Unix designpatterns

In order to facilitate scripting and pipelining (see Chgdpt@iultiprogramming) — it is wise to
choose the simplest interface pattern possible (that is, the pattern with the fewest channels to the
environment and the leasteractivity).

In many of the single-component patterns described above, it is emphasized that the pattern does not
require user interaction after startup time. When the ‘user’ is often expected to be another program
(and thus to lack the range and flexibility of a human brain) this is a very valuable feature, maximizing
scriptability.

We've seen that different interface design patterns optimize for traits valuable in differing
circumstances. In particular, there is a strong and inherent tension between the GUIs and design
patterns appropriate for novice and non-technical end-users (on the one hand) and those which serve
expert users and maximize scriptability (on olleer).

One way around this dilemma is to make programs with modes that exhibit more than one pattern. An
excellent example is the web browser lynx(1). It normally has a roguelike interface for interactive use,
but can be called with a -dump option that makes it into an emitter, formatting a specified web page to
text dumped on standaoditput.

Such dual-mode interfaces, however, are not normally attempted when the program has to have a true
GUI. The reasons for this are partly historical, but mostly have to do with controlling global

complexity. GUIs tend to require complex startup configurations and large volumes of specialized
code; these features coexist uneasily with the simpler patterns. Worst case, a dual-mode GUI/non-GUI
program could require two separate command-interpreter loops, with all that implies in the way of
code bloat and potentiadconsistencies.

Thus, when “choose the simplest pattern” conflicts with a requirement to produce a GUI, the Unix way
is to split the program in two, applying the ‘separated engine and interface’ datigm.

In fact, by combining a theme from ChagégMultiprogramming)with this idea, we can perhaps
name a new design pattern emerging uhdtaux and other modern, open-source Unixes where GUIs
are not merely a reluctant add-on but an active focus of lots of developfioent

The polyvalent-program pattern
A polyvalent program has the followirigits:

1. The program’s application-domain logic lives in a library with a documented API, which can be
linked to other programs. The program'’s interface logic to the rest of the world is a thin layer
over the library. Or perhaps there are several layers with different Ul styles, any of which the
library can be linkedo.

2. One Ul mode is a cantrip, compiler-like or CLI that executes its interactive commants in batch
mode.

3. One Ul mode is a GUI, either linked directly to the core library or as a separate process driving
the CLlinterface.



4. One Ul mode is a scripting interface using a modern general-purpose scripting languBgd,like
Python,or Tcl.

5. Optional extra: One Ul mode is a roguelike interface usinges(3).

Figure 11.2. Caller/callee relationships in a polyvalengrogram.
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Notably, theGIMPactuallyfilfils this pattern.



The Web browser as universal frontend

Separating your CLI back end from a GUI interface has become an even more attractive strategy since
the transformation of computing by the World Wide Web in the mid-1990s. For a very large class of
applications, it make increasing sense not to write a custom GUI front end at all, but rather to press
web browsers into service in thate.

This approach has many advantages. The most obvious is that you don’t have to write GUI code —
instead, you can declare it in a language (HTML) that is specialized for it. This avoids a lot of

expensive and complex single-purpose coding and often more than halves the total project effort.
Another is that it makes your application instantly Internet-ready; the front end may be on the same
host as the back end, or be a thousand miles away. Yet another is that all the minor presentation details
of the application (such as fonts and color) are no longer necessarily your back end’s problem, and
indeed can be customized by the users to their own tastes through mechanisms like browser
preferences and cascading style sheets. Finally, the uniform elements of the Web interface
substantially ease the user’s learniagk.

There are disadvantages. The two most important are (a) the batch style of interaction that the Web
enforces, and (b) the difficulties of managing persistent sessions using a stateless protocol. Though
these are not exclusively Unix issues, we’'ll discuss them here — because it's very important to think
clearly on thadesignlevel about when it's worthwhile to accept and/or work around thasstraints.

CGl, the Common Gateway Interface through which a browser can invoke a program on the server
host, does not support fine-grained interactivity well. Nor do the templating systems, application
servers, and embedded server scripts that are gradually replacing it (in an mild abuse of language, we
will use CGl for all of these in thisection).

You can’t do character-by-character or GUI-gesture-by-GUI-gesture I/O through a CGI gateway;
instead, you have to fill out an HTML form and click a submit button that sends the form contents to a
CGl script. The CGI script then runs and the server hands you back a page of HTML that it generated
(which may itself be another C@&rm).

This is essentially a batch style of interaction, not that far removed in concept from dropping punched
cards in an input hopper and getting back a printout. It can be made more palatable by using JavaScript
to interact with the user, batching up transactions into messages to be shippegecthe

Javaappletsan be more smoothly interactive with the server, and can open up their own
character-stream connections back to the server to support that. But Java has technical problems (it can
only use a fixed display area on the page, and can’t change the portion of the display outside that
rectangle) and much worse political ones (proprietary licensing from Sun has stalled out Java
deployment and made others reluctant to commit to it; you can’t count on every user’'s browser to
supportit).

Both Javaandlavascriptan run into browser incompatibilities, as whlicrosoft’s resistance to
implementing JDK 1.2 and Swing on Internet Explorer is a serious problem for Java applets, and
differing Javascript version levels can also break your application (though Javascript bugs are easier to
fix). Nevertheless, it is frequently less effort to work around these problems than it would be to write
and deploy a custom froehd.



As an independent issue, it is tricky to maintain session information across multiple CGI forms. The
server doesn’'t keep any state about client sessions between CGI transactions, so you can'’t rely on it to
connect later form submissions with earlier ones by the same user. There are two standard dodges
around this; chained forms and browseokies.

When you chain forms, you arrange for the CGl for the first form to generate a unique ID in an

invisible field of the second form, and for the second and all subsequent forms to pass that ID to their
successors. Cookies give a similar effect in a less direct way analogous to environment variables (see
any of the hundreds of books on CGlI design for details). In either case, your CGI has to use the ID as a
session index (or cookies to cache state directly) and to handle multiplexing the segdiortly.

It is often possible to live with these restrictions. Many nontrivial applications can be fit into a single
form and response, evading both problems. Even when this isn’t true and the application requires
multiple forms, the complexity and cost savings from not having to build and distribute a specialized
front end are so large that they can easily pay for the effort required to write CGls smart enough to do
their own sessiotracking.

The session management problem can be addressed with application servers like Zope or Enhydra
which provide a session abstraction, and services like user authentication to programs embedded inside
them. The drawback of these programs is identical to their advantage, the fact that they make it easier
to keep per-user state on the server. That per-user state can be a problem; it eats resources, and has to
be timed out because between transactions there is no way to know that the user is still on the other
end of thewire.

As usual, the best advice is to choose the simplest pattern possible. Resist the temptation to do a
heavyweight design relying on Java and/or an application server when simple CGls and cookies will
do thejob.

The way that browsers decouple front and back ends has larger implications. On the Web, locking in
consumers to closed, proprietary protocols and APIs has become more difficult and less attractive as
this trend has advanced. The economics of software development are therefore tilting towards HTML,
XML, and other open, text-based Internet standards. This trend synergizes in interesting ways with the
evolution of the open-source development model, which we’ll survey in Cliap{€@penSource)) In

the world that the Web is creating, Unix’s design tradition — including the approaches to interface
design we've surveyed in this chapter — looks more relevant thahefoze.




Silenceis golden

We cannot leave the subject of interactive user interfaces without noting one of Unix’s oldest and most
persistent design rules: when a program has nothing interesting or surprising to say, ghaltopld
Well-behaved Unix programs do their jobs unobtrusively, with a minimum of fuss and bother. Silence
is golden.

The “silence is golden” rule evolved originally because Unix predates video displays. On the slow
printing terminals of 1969, each line of unnecesary output was a serious drain on the user’s time. That
constraint is gone, but at least two good reasons for tersemess.

Here’s one: programs that babble don’t tend to play well with other programs. If your CLI program
emits status messages to standard output, then programs that try to interpret that output will be put to
the trouble of interpreting or discarding those messages (even if nothing went wrong!). Better to send
only real errors to standard error and not to emit unrequested délta at

Here’s another: junk messages are a waste of the human user’'s bandwidth. They're one more source of
distracting motion on a screen display that may be mediating for more important foreground tasks,
such as communication with othermans.

Go ahead and give your GUIs progress bars for long operations. That's good style — it helps the user
time-share his brain efficiently by cueing him that he can go off and read mail or do other things while
waiting for completion. But don't clutter GUI interfaces with confirmation popups except where you
have to guard operations that might lose or trash data — and even then, hide them when the parent
window is minimized, and bury them unless the parent windovideas?§ . Your job as an interface
designer is to assist the user, not to gratuitously get fiates

In general, it's bad style to tell the user things he already knows ("Program <foo> is starting up...", or
"Program <foo> is exiting" are two classic offenders). Your interface design as a whole should obey
the Rule of Least Surprise, but the content of messages should obey afRogt Sdirprise — be

chatty only about things that are deviations from what’s nornealhected.

If you want chatty progress messages for debugging purposes, disable them by default with a verbosity
switch. Before releasing for production, relegate as many of the normal messages as possible to being
displayed only when the verbosity switclois.

B9 If your windowing system supports translucent popups that intrude less between the user and the
application,usethem
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Unix’s Cornucopia of Languages

Unix supports a wider variety of application languages than any other single operating system; indeed,
it may well have hosted more different languages than every other operating system in the history of
computing combinedd .

There are at least two excellent reasons for this huge diversity. One is the wide use of Unix as a
research and teaching platform. The other (far more relevant for working programmers) is the fact that
matching your application design with the proper implementation language(s) can make an immense
difference in your productivity. Therefore the Unix tradition encourages the design of domain-specific
languages (as we mentioned in Chapédifdultiprogramming)and9 (Generatior}) and what are now
generally calledcriptinglanguages— those designed specifically to glue together other applications
andtools.

In truth, the term ‘scripting language’ is a somewhat awkward one. Many of the the major languages
usually so described (Perl, Tcl, Python, etc.) have outgrown the group’s scripting origins and are now
standalone general-purpose programming languages of considerable power. The term tends to obscure
strong similarities in style with other languages that are not lumped in with this group, notably Lisp

and Java. The only argument for continuing to use it is that nobody has yet inventedtarbetter

To apply the Unix philosophy effectively, you'll need to have more tharQurstyour toolkit. You'll
need to learn how to use some of Unix’s other languages (especially the scripting languages), and how
to be comfortable mixing multiple languages in specialist roles within large preaysiems.

In this chapter we’ll survey C and its most important alternatives, discussing their strengths and
weaknesses and the sorts of tasks to which they are best matched. The languages covered will be C,
C++, shell, Perl, Tcl, Python, Java, and Emacs Lisp. Each survey section will include case studies on
applications written using these languages, and references to other examples and tutorial material.
High-quality implementations of all these languages are available in open sourcénterties.

Warning: choice of application language is one of the archetypal religious issues in the Internet/Unix
world. People get very attached to these tools and will sometimes defend them past all reason. If we
achieve our aim zealots of all stripes may be offended by this chapter, but everyone else will learn
from it.

P9 See thiFree Compiler and Interpreteist for details.



ftp://ftp.idiom.com/pub/compilers-list/free-compilers

Why Not C?

C is the native language of Unix. Since the early 1980s it has come to dominate systems programming
almost everywhere in the computer industry. Outside of Fortran’s niche in scientific and engineering
computing, and excluding the vast invisible dark mass of COBOL financial applications at banks and
insurance companies, C and its offspring C++ have now (in 2003) dominated applications
programming almost completely for more thathegade.

It may therefore seem perverse to assert that C and C++ are nowadays almost always the wrong
vehicle for beginning new applications development. But it's true; C and C++ optimize for machine
efficiency at the expense of increased implementation and (especially) debugging time. While it still
makes sense to write system programs and time-critical kernels of applications in C or C++, the world
has changed a great deal since these languages came to prominence in the 1980s. In 2003, processors
are a thousand times faster, memories are a thousand times larger, and disks are aeiactor of

thousand larger, for roughly constatutlarsq .

These plunging costs change the economics of programming in a fundamental way. Under most
circumstances it no longer makes sense to try to be as sparing of machine resources as C permits.
Instead, the economically optimal choice is to minimize debugging time and maximize the long-term
maintainability of the code by human beings. Most sorts of implementation (including application
prototyping) are therefore better served by the newer generation of interpreted and $anigtinges.

This transition exactly parallels the conditions that, last time around the wheel, led to the rise of C/C++
and the eclipse of assembjgpgramming.

The central problem of C and C++ is that they require programmers to do their own memory
management — to declare variables, explicitly manage pointer-chained lists, dimension buffers, detect
or prevent buffer overruns, and to allocate and deallocate dynamic storage. Some of this task can be
automated away by unnatural acts like retrofitting C with a garbage collector such as the
Boehm-Weiser implementation, but the design of C is such that this cannot be a ceoiptiete.

C memory management is an enormous source of complication and error. One study (cited in
estimates that 30% or 40% of development time is devoted to storage management for
programs that manipulate complex data structures. This did not even include the impact on debugging
cost. While hard figures are lacking, many experienced programmers believe that
memory-management bugs are the single largest source of persistent errors in reztaeSEd

Buffer overruns are a common cause of crashes and security holes. Dynamic-memory management is
particularly notorious for spawning insidious and hard-to-track bugs, such as memory leaks and
stale-pointeproblems.

Not so long ago, manual memory management made sense anyway. But there are no ‘small systems’
any more, not in mainstream applications programming. Under today’s conditions, an implementation
language that automates away memory management (and buys an order of magnitude decrease in bugs
at the expense of using a bit more more cycles and core) makes a lcemsee

A recent papdfPrechelfimusters an impressive array of statistical evidence for a claim that
programmers with experience in both worlds will find very plausible; programmers are just about
twice as productive in scriptingnguagesaghey are in C or C++. This accords well with the

30%-40% penalty estimate noted earlier, plus debugging overhead. The performance penalty of using
a scriptinganguages very often insignificant for real-world programs, because real-world programs
tend to be limited by waits for I/O events, network latency, and cache-line fills rather than by the
efficiency with which they use the CHidelf.



The Unix world has been slowly coming around to this point of view in practice, especially since 1990
or so, as is shown by the increasing popularity of Perl and other scripting languages. But the evolution
of practice has not yet (as of early 2003) led to a wholesale change in conscious attitudes;, many Unix
programmers are still absorbing the lesBen andPythonhave beeteaching..

We can see the same trend happening, albeit more slowly, outside the Unix world — for example, in
the continuing shift from C++ to Visual Basic evident in applications development under Microsoft
Windows andNT, and the move towardkgvain the mainframevorld.

The arguments against C and C++ apply with equal force to other conventional compiled languages
such as Pascal, Algol, PL/I, Fortran, and compiled Basic dialects. Despite occasional heroic efforts
such as Ada and the Eiffel family, the differences between conventional languages remain superficial
when set against their basic design decision to leave memory managemeptaogthmmelfd .

Though high-quality open-source implementations of most languages ever written are available under
Unix, no other conventional languages remain in widespread use in the Unix or Windows worlds; they
have been abandoned in favor of C and C++. Accordingly we will not surveyhirem

[B9 Outside the Unix world, this three-orders-of-magnitude improvement in hardware performance
has been masked to a significant extent by a corresponding drop in s@i&rfarenance.

Y The severity of this problem is attested by the rich slang Unix programmers have developed for
describing different varieties; ‘aliasing bug’, ‘arena corruption’, ‘memory leak’, ‘buffer overflow’,
‘stack smash’, ‘fandango on core’, ‘stale pointer’ ‘heap trashing’ and the rightly dreaded ‘secondary

damage’. See tijgargonFilg for elucidation.

3 Most Eiffel and Sather implementations have garbage collection, but the language standards do
not mandate this; thus, an application could find itself running in an environment where the facility is
notpresent.
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Interpreted Languages and MixedStrategies

Languages that avoid manual memory management do it by having a memory manager built into their
runtime executable somewhere. Typically, runtime environments in these languages are split into a
program part (the running script itself) and the interpreter part, with the interpreter managing dynamic
storage. On Unixes the interpreter core can be shared by multiple program parts, reducing the effective
overhead for eachne.

Scriptingis nowhere near a new idea in the Unix world. As far back as the mid-1970s, in an era of far
smaller machines, the Unix shell (the interpreter for commands typed to a Unix console) was designed
as a full interpreted programming language. It was common even then to write programs entirely in
shell,or to use the shell to write glue logic that knit together canned utilities and custom programs in C
into wholes greater than the sum of their parts. Classical introductions to the Unix environment (such
asThe Unix ProgrammingnvironmenfKernighan&Pike84]J have dwelt heavily on this tactic, and

with good reason; it was one of Unix’s most imporianbvations.

Advanced shell programming mixes languages freely, employing both binaries and interpreted
elements from half a dozen or more other languages for subtasks. Each language does what it does
best, each component is a module with narrow interfaces to the others, and the global complexity of
the whole is much lower than it would be had it been coded as a single monster monolith in a
general-purposknguage.

This is a knowledge-intensive (rather than coding-intensive) style of programming. To make it work,
you have to have both working knowledge of a suitable variety of languages and expertise about what
they're best at and how to fit them together. In our survey, we will try to point you at references to
help you with the first and an overview to convey the second. For each language surveyed we will
include case studies of successful programs that exemplfiyetsgths.



Languageevaluations
C

Despite the memory-management problem, there are some application niches for which kinig. still
Programs that require maximum speed, have real-time requirements, or are tightly coupled to the OS
kernel are good candidates for

Programs that must be portable across multiple operating systems may also be good candidates for C.
Some of the alternatives to C that we shall discuss below are, however, increasingly penetrating major
non-Unix operating systems; in the near future, portability may be less a distinguishing advantage of
C.

Sometimes the leverage to be gained from existing programs like parser generators or GUI builders
that generate C code is so great that it justifies C coding of the rest of agptiaktion.

And, of course, C proved indispensible to the developers of all its alternatives. Dig down through
enough implementation layers under any of the other languages surveyed here and you will find a core
implemented in pure, portable C. These languages inherit many of the advantages of

Under modern conditions, it's perhaps best to think of C as a high-level assembler for the Unix virtual
machine (recall the discussion of the success of C as a case study in [Efdptiularity)). C

standards have exported many of the facilities of this virtual machine, such as the standard 1/O library
to other operating systems. C is where you go when you want to get as close as possible to the bare

metal but stayportable.

One good reason to learn C, even if your programming needs are satisfied by a higher-level language,
is that it can help you learn to think at hardware-architecture level. The best reference and tutorial on C
for people who are already programmers is $tik C ProgramminganguaggK&R] |

Porting C code between Unix variants is almost always possible and usually easy, but there are
specific areas of variation (like signals and process control) that can be tricky to get right. We
highlight some of these issues in Chafifg(Portability}] GCC ports are even available for
Microsoft’s family of operating systems. Differing OS bindings can of course cause C portability
problems, although Windows NT at least theoretically supports an ANSI/POSIX-comphétit C

High-quality C compilers are available as open-source software over the Internet; the best-known and
most widely used is the Free Software Foundation’s GNU C compiler (part of GCC, the Gnu Compiler
Collection),which has become the native C of all open-source Unix systems and many even in the
closed-source world. GCC sources are available at the

Summing up: C's best side is resource efficiency and. closeness to the machine. Its worst side is
memory-managemehell.

C case studyfetchmail

The best case study for C is the Unix kernel itself, where a language which naturally supports
hardware-level operations is actually a strong advantage. But the fetchmail utility, available at the
[fetchmail homepagé is a good example of the kind of user-land utility that is still best codéd in
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Fetchmailis a network gateway program. Its main purpose is to translate between POP3 or IMAP
remote-mail protocols and the Internet’s native SMTP protocol for email exchange. It is in extremely
widespread use on Unix machines that use intermittent SLIP or PPP connections to Internet service
providers, and as such probably touches a sizeable fraction of the Internetiaffiil

The program does only the simplest kind of dynamic-memory management; its only complex data
structure is a singly-linked list of per-mailserver control blocks built just once, at startup time, and
changed only in fairly trivial ways afterwards. This substantially erodes the case against using C by
sidestepping C’s greateseakness.

On the other hand, these control blocks are fairly complex (including all of string, flag, and numeric
data) and would be difficult to handle as coherent fast-access objects in an implementation language
without an equivalent of the C struct feature. Most of the alternatives to C are weaker than C in this
respec{PythonandJavabeing notablexceptions).

Finally, fetchmail requires the ability to parse a fairly complex specification syntax for per-mailserver
control information. In the Unix world this sort of thing is classically handled by using C code
generators that grind out source code for a tokenizer and grammar parser from declarative
specifications. This also argued for usidg

Fetchmail might reasonably have been coddeyimon,albeit with possibly significant loss of
performance. Its size and data-structure complexity would have excluded shEdl aigtit off and

strongly counterindicateBerl,and the application domain is outside the natural scope of Hrisgcs

A Javaimplementation wouldn’t have been an unreasonable path, but Java’'s object-oriented style and
garbage collection would have offered little purchase on fetchmail's specific problems ovér what
already vyields. Nor coul@++ have done much to simplify the relatively simple internal logic of
fetchmail.

However, the real reason fetchmail is a C program is that it evolved by gradual mutation from an
ancestor already written in C. The existing implementation has been extensively tested on many
different platforms and against many odd and quirky servers. Carrying all that implicit knowledge
through to a re-implementation in a different language would be messy and difficult. Furthermore,
fetchmail depends on imported code for functions (like NTLM authentication) that don’t seem to be
available above @vel.

Fetchmail's interactive configurator, which did not have a C legacy problem, is written in Python;
we’ll discuss that case along with thamtguage.

C++

When C++ was first released to the world in the mid-1980s object-origd@Jdanguages were

being widely touted as the silver bullet for the software-complexity problem. C++'s OO features
appeared to be an overwhelming advantage over the ancestral C, and partisans expected that it would
rapidly make the older languagbsolete.

This has not happened. Part of the fault can be laid to problems in C++ itself; the requirement that it be
backward-compatible with C forced a great many compromises on the design and made the language
overall rather baroque and excessively complicated. That requirement also prevented C++ from going
to fully automatic dynamic-memory management and addressing C’'s most geablgsn.



Another part of the fault must be laid to the failuré@ itself to live up to expectations. We

examined this problem in ChapefModularity), observing the tendency of OO methods to lead to

thick glue layers and maintenance problems. Today, inspection of open-source archives (in which
choice of language reflects developers’ judgements rather than corporate mandates) reveals that C++
usage is still heavily concentrated in GUIs and multimedia toolkits and games (the major success areas
for OO design) and little usezlsewhere.

It may be that C++’s realization @O is particularly problem-prone. There is some evidence that C++
programs have higher life-cycle costs than equivalents in C, FORTRAN, or Ada, but whether this is a
problem withOO or specifically with C++ or both remains unclear, though there is reason to suspect

both are implicatefHatton98

In recent years, C++ has incorporated some important non-OO ideas. It has exceptions similar to those
in Lisp; that is, it is possible to throw an object or value up the call stack until it is caught by a handler.
STL (Standard Template Library) provides generic programming; that is, it is possible to code
algorithms that are independent of the type signature of their data and have them compiled to do the
right thing atruntime.

When all is said and done, however, C++'s most fundamental problem is that it is basically just
another conventional language. It confines the memory-management problem better than it did
pre-STL, and a lot better than C does, but doesn’t solve the problem. For many types of application its
OO features are not significant, and simply add complexity to C without yielding much advantage.
Open-source C++ compilers are available; if C++ were unequivocally superior to C it would now
dominate.

Summing up: C’s best sign is its combination of compiled effeciency with faciliti€d®and
generic programming. Its worst side is that it is baroque and complex, and tends to encourage
over-complexdesigns.

Consider using C++ if an existing C++ toolkit or service library offers powerful leverage for your
application, or if you're in one of the application areas mentioned above for whi@@languages
known to be a largein.

The classic C++ reference is Stroustrifi'® C++ Programmind_anguaggStroustrup You will find
an excellent beginner’s tutorial on C++ and basic OO methddhois Afraid ofC++? [Heller], but
be aware that that book does not cover either advanced OO or STL and predates the ISO C++
standard.

The Gnu CompileCollectionincludes a C++ compiler. The language is therefore universally

available on Unix and ollicrosoft operating systems; comments made under C above also apply
here. Strong collections of open-soyscgportibrariegare available. However, portability is
compromised by the fact that (as of early 2003) actual C++ implementations implement only subsets
of the full C++99 ISGstandard.

C++ case study: The Qtoolkit

The Qt interface toolkit is one of the notable C++ success stories in today’s open-source world. It
provides a widget set and API for writing graphical user interfaces under X, one deliberately (and
rather effectively) designed to emulate the visual look and feel of either MRlafi®umor the
Microsoft Windowsinterface.


http://www.boost.org/

The Qt toolkit is a critical and visible component of the KDE project, the senior of the open-source
world’s two efforts to produce a competitive GUI and integrated set of desktop produotiNgty

Qt's C++ implementation exhibits the strengths oDElanguagdor encapsulating user-interface
components. In a language supporting objects, a visual hierarchy of interface widgets can be cleanly
expressed in the code by a hierarchy of class instances. While the sort of thing can be sin@ilated in
with explicit indirection through hand-rolled method tables, such code is much cleaner in C++.
Comparison with the notoriously baroque C API of Motihistructive.

The Qt source code and reference documentation is availablgTabtiiech sitg

Shell

The ‘Bourne shell’ (sh) of Version 7 Unix was Unix’s first (and for many years its only) portable
interpreted langage. Today the ancestral Bourne shell has largely been displaced by variants of the
upward-compatible ‘Korn Shell’ (ksh); the single most important of these is the Bourne Again Shell,
bash. A few other shells exist and are used interactively, but are not significant as programming
languages.

Simple shell programs are extremely easy and natural to write. As program size gets larger, however,
they tend to become rather ad hoc. Some parts of shell syntax (notably its quoting and
statement-syntax rules) can be very confusing. These drawbacks generally relate to compromises in
the programming-language part of the shell’'s design made to preserve its utility as an interactive
command-linénterpreter.

Programs are often described as being ‘in shell’ even when they are not pure shell but include heavy
use ofC filters like sort(1) and of standard text-processing mini-languages like sed(1) or awk(1). This
sort of programming has been in decline for some years, however; nowadays such elaborate glue logic
is generally written ifPerlor Python,with shell being reserved for the simplest kinds of wrappers (for
which these languages would be overkill) and system boot-time initialization scripts (which cannot
assume they am@vailable).

Such basic shell programming should be adequately covered in any introductory Unix boblke The
Unix ProgrammingenvironmenfKernighan&Pike84femains one of the best sources on intermediate
and advanced shell programming. Korn shell implementations or clones are present dmievery

Complex shell scripts often have portability problems, not so much because of the shell itself but
because they make assumptions about what other programs are available as componrnts. While Bourne
and Korn-shell clones have been sporadically available on non-Unix operating systems, shell programs
are not (practically speaking) at all portable @ffix.

Summing up: shell’'s best side is that it is very natural and quick for small scripts. Its worst side is that
large shell scripts depend on lots of auxilary commands that aren’t necessarily identically behaved nor
even present on all targeiachines.

It is almost never necessary to build or install a shell, as all Unix systems and Unix emulators come
equipped with them. The standard shelLomux and other leading-edge Unix variants is ruagh.


http://www.trolltech.com/

Casestudy: xmlto

xmlto is a driver script that calls all the commands needed to render an XML-DocBook document as
HTML, Postscript, plain text, or in any one of several other formats (we’ll take a closer look at
DocBook in Chaptdt6 (Documentation) It is written inbash.

xmito handles the details of calling an XSLT Engine with appropriate stylesheet, then handing off the
result to a postprocessor. For HTML and XHTML the XSLT transformation does the entire job. For
plain text, the XML is also processed into HTML, but then handed to a postprocessor — lynx(1) in its
-dump mode, which renders HTML to flat text. For Postscript, the XML is transformed to XML FO
(formattingobjects)which a postprocessor then massages into TeX macHoy| ttormat via tex(1),

and then finally to Postscript via the well-known dvi2p$@b).

xmlto consists of a single front-end shellscript. It calls any one of several script plugins, each named
after the target format. Each plugin is a shellscript. Depending on how it's called, it either supplies a
stylesheet for the front end to apply, or calls the appropriate postprocessor(s) with various cannet
arguments.

This architecture means that all the information about a given output format lives in one place (the
corresponding script plugin), so adding new output types can be done without disturbing the front-end
code aall.

xmlto is a good example of a medium-sized shell application. Néither C++ would have made

sense, as they are awakward for scripting. Any of the other scripting languages in this chapter could
have been used for this job; but it's all simple command dispatching, with no internal data structures

or complex logic, so shell is good enough. Shell has the advantage of being ubiquitous on the intended
targetsystems.

In theory this script could run on any system supporting bash. The real constraint is the requirement
for one of the XSLT engines and all the postprocessors needed to be present on the system. In practice,
this script is not likely to run anywhere but under one of the modern open-tnires.

Casestudy: SorceryLinux

Sorcerer GNU/Linux is &inux distribution that you install as a small, bootable foothold system just
powerful enough to run bash(1) and a couple of download utilities. With this code in place, you can
invoke Sorcery, the Sorcerer packagstem.

Sorcery handles installing, removing, and integrity-checking software packages. When you “cast
spells” Sorcery downloads the sourcecode, compiles in, installs it, and saves a list of files that were
installed (along with a build log and checksums for all the files). Installed packages can be “dispelled”
or removed. Package listing and integrity checks are also available. More details are available at the
|[Sorcery projecsite

The Sorcery system is written entirely in shell. Program installation procedures tend to be small,

simple programs for which shell is appropriate. In this particular application, the main drawback of

shell is neutralized because Sorcery’s authors can guarantee that the helper programs they need will be
present in the footholglystem.
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Perl

Perl is shell on steroids. It was specifically designed to replace awk(1), and expanded to replace shell
as the ‘glue’ for mixed-language scripbgramminglt was first released ih987.

Perl's strongest point is its extremely powerful built-in facilities for pattern-directed processing of
textual, line-oriented data formats; it is unsurpassed at this. It also includes far stronger data structures
than shell, including dynamic arrays of mixed element types and a ‘hash’ or ‘dictionary’ type that
supports convenient and fast lookup of nhame-vpaies.

Additionally, Perl includes a rather complete and well thought out internal binding of virtually the
entire Unix API, drastically reducing the need @and making it suitable for jobs like sSimpi€P/IP

clients and even servers. Another strong advantage of Perl is that a large and dedicated open-source
community has grown up around it. Its home on the net [Edmeprehensive Perl Archivéetwork
Dedicated Perl hackers have written hundreds of freely reusable Perl modules for many different
programming tasks. These include everything from structure-walking of directory trees through X
toolkits for GUI building, through excellent canned facilities for supporting HTTP robots and CGI
programming.

Perl’'s main drawback is that parts of it are irredeemably ugly, complicated, and must be used with
caution and in stereotyped ways lest they bite (its argument-passing conventions for functions are a
good example of all three). It is harder to get started in Perl than slieihThough small programs

in Perl can be extremely powerful, it requires careful discipline to maintain modularity and keep a
design under control as program size increases. Because some limiting design decisions early in Perl's
history could not be reversed, many of the more advanced features have a fragile, klugey feel about
them.

The definitive reference on PerlRsogrammingPerl[[Wall etal.] This book has nearly everything
you will ever need to know in it, but is notoriously badly organized; you will have to dig to find what
you want. A more introductory and narrative treatment is availatileamingPerl[[SchwartZz]

Perl is universal on Unix systems. Perl scripts at the same major release level tend to be readily
portable between Unixes, but as of early 2003 many proprietary Unixes still support only Perl 4 rather
than the newer Perl 5. Perl implementations are available (and even well documented) for the
Microsoft family of operating systems and bfacOSas well. PerITk provides cross-platform GUI
capability.

Summing up: Perl’s best side is as a power tool for small glue scripts involving a lot of
regular-expression griniding. Its worst side is that it is ugly, spiky and nigh-unmaintainable in large
volumes.

A small Perl case studyhttpget
httpget is a script that is widely used for batch fetching of URLs. You can find current foenges

httpget is a good example of a small Perl script, illustrating both the strengths and weaknesses of the
language. It makes massive use of regular-expression matching. On the other hand, some of the Perl
service libraries it uses have to be copied inline to the script, because they’re not guaranteed to be
present in any given Pérnistallation.
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Tcl andPythonare both good for small scripts of this type, but both lack the Perl convenience features
for regular-expression matching that this script uses heavily; an implementation in either would have
been reasonable, but much lesmpactand expressive. An Emaktsp implementation would have

been even faster to write and more compact than the Perl one, but probably painfullyusew to

A large Perl case studykeeper

Keeper is the tool used to file incoming packages and maintain both FTP and WWW index files for the
hugeLinuxfree-softwarearchives at Metalab. You can find sources and documentation|seadheh
[tools subdirectory of the Metalachive

Keeper is a good example of a medium-to-large interactive Perl application. The command-line
interface is line-oriented and patterned after a specialized shell or directory editor; note the embedded
help facilities. The working parts make very heavy use of file and directory handling, pattern
matching, and pattern-directed editing. Note the ease with which keeper generates Web pages and
electronic-mail notifications from programmatic templates. Note also the use of a canned Perl module
to automate walking various functions over directiegs.

At about 3300 lines, this application is probably pushing the size and complexity limit of what one
should attempt in a single Perl program. Nevertheless, most of it was written in a period of six days. In
C, C++ or Javait would have taken a minimum of six weeks and been extremely difficult to debug or
modify after the fact. It is way too large for pdrel. A Pythonversiorwould probably be structurally
cleaner, more readable, and more maintainable — but also more verbose (especially near the
pattern-matching parts). An Emddsp mode could readily do the job, but Emacs is not well suited

for use over a telnet link that is often slowed to a crawl by seoragestion.

Tcl

Tcl (Tool Command Language) is a small language interpreter designed to link with cathpiled
libraries, providing scripted control of C co@xtendedscriptg. Its original application was to control
libraries for electronic simulators (SPICE-like applications). Tcl is also suitabdgrfbeddedcripts

— that is, scripts called from within C programs and returning values to those programs. Tcl had its
first general public release i990.

Some facilities built on top of Tcl have achieved wide use outside the Tcl community itself. The two
most important of thesare:

® The Tk toolkit, a kinder and gentler X interface that makes it easy to rapidly build buttons, dialog
boxes, menu trees, and scrolling text widgets and collect inputtifrem

® Expect, a language that makes it relatively easy to script fully interactive programs with widely
variableresponses.

The Tk toolkit is so important that the language is often referred to as Tcl/Tk. Tk is also frequently
used withPerlandPython.

The main advantage of Tcl itself is that it is extremely flexible and radically simple. The syntax is very
odd (based on a positional parser) but totally consistent. There are no reserved words, and is no
syntactic distinction between a function call and ‘built-in’ syntax; thus the Tcl language interpreter
itself can be effectively redefined from within Tcl (which is what makes projects like Expect
reasonable).
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The main drawback of Tcl is that the pure language has only weak facilities for namespace control and
modularity, and two of them (upvar and uplevel) are rather dangerous if not used with great caution.
Also, there are no data structures other than association lists. It therefore scales up very poorly — it is
hard to organize and debug pure Tcl programs of even moderate size (more than a few hundred lines)
without tripping over your own feet. In practice, almost all large Tcl programs use one of several
OOextensionso thelanguage.

The oddities of the syntax can at first be a problem as well; the distinction between string quotes and
braces will probably give you headaches for a while, and the rules for when things need to be quoted
or braced are a hiticky.

Pure TCL only provides access to a relatively small commonly-used part of the Unix API (essentially
just file handling, process-spawning, and sockets). Indeed, Tcl has the flavor of an experiment in
seeing how small a scriptingnguagecaget and still be useful. Tcl extensions (similar to Perl
modules) provide a richer set of capabilities, but are (like CPAN modules) not guaranteed to be
installedeverywhere.

The original Tcl reference ikcl and the TR oolkit[Osterhouf] but has been largely superseded by
Practical Programming in Tcl an@ik[Welch] The Tcl world doesn’'t have one central repository run

by a core group analogous to Perl's or Python's, but there are several excellent websites that point to
each other and cover most Tcl tool and extension development. LooKTal DeveloperXchangg

first; among other things, it offers Tcl sources of an interactive Tcl tutorial. There iEdsoandry

at SourceForgde

Tcl scripts have issues similar to shell scripts; the language itself is highly portable, but the
components it calls may not be. Tcl implementations exist for the Microsoft family of operating
systemsMacOS,and many other platforms. Tcl/Tk scripts will run cross-platform with GUI
capabilities.

Summing up: Tcl's best side is its sparempactdesign and thextensibilityofthe Tcl interpreter. Its
worst point is the odd positional parser and the weakness of its of data structures and namespace
control; the later makes it scale poorly for lapgejects.

Casestudy: TkMan

TkMan is a browser for Unix man pages and Texinfo documents. At roughly 1200 lines, it is quite
large to be written in pure Tcl, but the code is unusually well-modularized and mature. It uses Tk to
provide a GUI interface quite a bit nicer than either the stock man(1) or xman(1) dilpigsrt.

TkMan makes a good case study because it exhibits almost the full gamut of Tcl techniques.
Highlights include Tk integration, scripted control of other Unix applications (such as the Glimpse
search engine), and the use of Tcl to parse Texrmafikup.

Any of the other languages would have made for a less direct interface to the Tk GUI that constitutes
most of thiscode.

Moodss:a large Tcl casestudy

The Moodss system is a graphical monitoring application for system administrators. It can watch logs
and gather statistics for MySQL, Linux, SNMP networks, Apdche,and presents a digested view of
them through spreadsheet-like GUI panels called ‘dashboards’, Monitoring modules can be written in
Pythonor Perlas well as Tcl. The code is polished, mature, and considered an exemplar in the Tcl


http://www.tcltk.com/
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community. There is|projectwebsitg

The Moodss core consists of about 18000 lines of Tcl. It uses several Tcl extensions including a
custom object system; the Moodss author admits that without these “writing such a big application
would not have beepossible”.

Again, any of the other languages would have made for a less direct interface to the Tk GUI that
constitutes most of thisode.

Python

Python is a scriptintanuagedesigned for close integration with It can both import data from and
export data to dynamically loaded C libraries, and can be called as an embedded scripting language
from C. Its syntax is rather like a cross between that of C and the Modula family, but has the unusual
feature that block structure is actually controlled by indentation (there is no analogue of explicit
begin/end or C curly brackets). Python was first publicly releasg@d.

The Python language is a very clean, elegant design with excellent modularity features. It offers
designers the option to write in an object-oriented style but does not force that choice (it can be coded
in a more classically procedural C-like way). It has a type system comparable in expressive power to
Perl’s,including dynamic container objects and association lists, but less idiosyncratic (actually, it is a
matter of record thaerl’'sobject system was built in imitation of Python’s). It even pleasgs

hackers with anonymous lambdas (function-valued objects that can be passed around and used by
iterators). Python ships with the Tk toolkit, which can be used to easily builin@faces.

The standard Python distribution includes client classes for most of the important Internet protocols
(SMTP, FTP, POP3, IMAP, HTTP) and generator classes for HTML. It is therefore very well-suited to
building protocol robots and network administrative plumbing. It is also excellent for Web CGI work,
and competes successfully wRlerlat the high-complexity end of that applicatemea.

Of all the interpretive languages we describe, Pythordandare the two most clearly suited for

scaling up to large complex projects with many cooperating developers. In many ways Python is
simpler than Java, and its friendliness to rapid prototyping may give it an edge over Java for
standalone use in applications that are neither hugely complex nor speed-critical. An implementation
of Python in Java, designed to facilitate mixed use of these two languages, is available and in
production use; it is calledlython.

Python cannot compete wi@or C++ on raw execution speed (though using a mixed-language
strategy on today’s fast processors probably makes that relatively unimportant). In fact it's generally
thought to be the least efficient and slowest of the major scripting languages, a price it pays for
runtime type polymorphism. It loses in expressivenegettfor small projects and glue scripts

heavily dependent on regular-expression capability. It would be overkill for tiny projects, to which
shellor Tcl might be bettesuited.

Like Perl, Python has a well-established development community wehteal Welsitg carrying a
great many useful Python implementations, tools and extensidales.

The definitive Python referenceRsogrammingPythor[Lutz]} Extensive on-line documentation on
Python extensions is also available at the Pythonsiteb


http://jfontain.free.fr/moodss/
http://www.python.org/

Python programs tend to be very portable between Unixes and even across other operating systems;
the standard library is powerful enough to significantly cut the use of non-portable helper programs.
Python implementations are available fdicrosoft operating systems and fotacOS.Cross-platform

GUI development is possible with either Tk or two other toolkits. Python/C applications can be
‘frozen’, quasi-compiled into pure C sources that should be portable to systems with no Python
installed.

Summing up: Python’s best side is that it encourages clean, readable code and combines accessibility
with scaling up well to large projects. Its worst side is inefficiency and slowness, not just relative to
compiled languages but relative to other scripting languageslas

A small Python case studyimgsizer

Imgsizer is a utility that rewrites WWW pages so that image-inclusion tags get the right image size
parameters automatically plugged in (this speeds up page loading on many browsers). You can find
sources and documentation in the URMVW tools subdirectory of the ibibliarchivé

Imgsizer was originally written iRerl,and was a nearly ideal example of the sort of small,
pattern-driven text-processing tool at which Perl excels. It was later translated to Python to take
advantage of Python’s library support for HTTP fetching; this eliminated a dependency on an external
page-fetching utiity. Observe the use of file(1) and ImageMagick identify(1) as specialist tools for
extracting the pixel sizes ohages.

The dynamic string-handling and sophisticated regular-expression matching required would have
made imgsizer quite painful to write @or C++; that version would also have been much larger and
harder to read. Java would have solved the implicit memory-management problem, but is hardly more
expressive tha@ or C++ at text pattermatching.

A medium-sized Python case studyetchmailconf

In Chaptefll (Usernterfacegwe examined the fetchmail/fetchmailconf pair as an example of one
way to separate implementation from interface. Python’s strengths are well illustrated by
fetchmailconf.

Fetchmailconf uses the Tk toolkit to implement a multi-panel GUI configuration editor (Python
bindings also exist for GTK+ and other toolkits, but Tk bindings ship with every Pytiterpreter).

In expert mode, the GUI supports editing of about sixty attributes divided among three panel levels.
Attribute widgets include a mix of checkboxes, radio buttons, text fields, and scrolling listboxes.
Despite this complexity, the first fully-functional version of the configurator took less than a week to
design and code, counting the four days it took for the author to learn Pythdk.and

Python excels at rapid prototyping of GUI interfaces, and (as fetchmailconf illustrates) such prototypes
are often deliverablé?erlandTcl have similar strengths in this area (including the Tk toolkit, which

was written for Tcl) but are hard to control at the complexity level (approximately 1400 lines) of
fetchmailconf. Emackisp is not suited for GUI programming. Choosileyawould have increased

the complexity overhead of this programming task without delivering significant benefits for this
non-speed-intensivapplication.


http://sunsite.unc.edu/

A large Python case studyPIL

PIL, the Python Imaging Library, supports the manipulation of bitmap graphics. It supports many
popular formats, includingNG,JPEG, BMP, TIFF, PPM, XBM, and GIF. Python programs can use

it to convert and transform images; supported transformations include cropping, rotation, scaling, and
shearing. Pixel editing, image convolution, and color-space conversions are also supported. The PIL
distribution includes Python programs which make these library facilities available from the command
line. Thus PIL can be used either for batch-mode image transformation or as a strong toolkit over
which to implement program-driven image processingitofiaps.

The implementation of PIL illustrates the way Python can be readily augmented with loadable
object-code extensions to the Python interpreter. The library core, implementing fundamental
operations on bitmap objects, is writterQrior speed. The upper levels and sequencing logic are in
Python, slower but much easier to read and modifyeaiehd.

The analogous toolkit would be difficult or impossible to write in Enkagg or shell,which don’t

have or don't document a C extension interface ateallhas a good C extension facility, but PIL
would be an uncomfortably large project in Teérlhas such facilities (Perl XS), but they are ad-hoc,
poorly documented, complex, and unstable by comparison to Python’s and use of them is rare.
Java’'sNativeMethod Interface appears to provide a facility roughly comparable to Python'’s; PIL
would probably have made a reasonable pawgect.

The PIL code and documentation is available

Java

Java was designed to be “write once, run anywhere” and to support embedding embedding interactive
programs in web pages that would be runnable from any browser. Thanks to a series of technical and
strategic blunders by its owner, SMicrosystemsit has failed in both its original objectives. But it is

still sufficiently strong at both systems and applications programming to be seriously chal@nging
andC++. Java was announced1895.

Java is cleverly designed to capture the huge benefit of automatic memory management and the lesser
but not insignificant benefit of supportif@O design, while being far smaller and simpler tkart. It

retains a broadly C-like syntax that most programmers will find comfortable. It includes support for
callouts to dynamically-loaded C and calling Java as an embedded language from C. Nor is it trivial
thatSunhas done an excellent job of making good Java documentation availablé/gelthe

Against Java, we can say that (compared to,Rgon)some parts of it appear over-complex and
others deficient. Java’s class-visibility and implicit-scoping rules are baroque. The interface facility
avoids complex problems with multiple inheritance at the cost of being only slightly less difficult to
understand and use in itself. Features like inner and anonymous classes can lead to very confusing
code. The absence of reliable destructor methods means that it is difficult to assure proper
management of resource other than memory, such as mutexes toukéle

Furthermore, Sun’s handling of the Java language has been both politically and technically obtuse.
Java’s first GUI toolkit, AWT, was a mess that had to be scrapped and replaced. Withdrawing the
language from ECMA/ISO standardization further nettled many developers already upset by features
of the so-called “Sun Community Source License”. Restrictions in the Sun Community Source
License continue to prevent open-source implementations of Java 1.2 and their J2EE (Java 2
Enterprise Edition) specification. This compromises Java'’s original objective of unipertaility.
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Sadly, browser applets are dehticrosoft’'sdecisiomot to support Java 1.2 in Internet Explorer

effective killed them. However, Java seems to have found a secure niche in the computing ecology,
used for in ‘servlets’ running within web application servers. It has also become commonly used for a
lot of in-house corporate programming not directly tied to databases or webservers. It has become
major competition for both Microsoft's ASP/COM plaform and FElIs.

Overally, we can fairly judge Java to be superidCta (which is both far more complex and does

less to attack the memory-management problem) for all but systems programming and the most
speed-critical applications. Experience seems to show that Java programmers are somewhat less likely
to fall into the trap of excessiv@Olayeringthan are C++ programmers, though this remains a
significantproblem.

How Java will fare in equilibrium with the the other languages we describe here is unclear as yet, and
may depend largely on project scale. We may expect its proper niche to reBgthbleés.Like

Python, it cannot compete wihor C++ on raw execution speed, nor agaidstlon small projects

that use pattern-driven editing heavily. It is (more definitely than Python) overkill for small projects.

We may guess that Python will have an edge in smaller projects and Java in larger ones, but the verdict
of experience is not yat.

The best single reference on paper is probdda In ANutshel[[FlanaganJava]Trails to all the
world’s Java web sites begi which also has complete HTML documentation
available for download for free. T[@pen Directory jav®agéalso collects useful Javiaks.

Java implementations are available for all Unixes and for Microsoft opesytitgmsand support
cross-platform portability of all pure-Java programs (including Gagiabilities).

Sources for Kaffe, an open-source Java implementation with class libraries conforming to most of
JDK 1.1 and portions of JDK 1.2, are available ajthtfe projectsitg

There is a Java front end for GCC. GCJ can compile Java code to either Java bytecode or native code,
and can compile Java bytecode to native code as well. It comes packaged with open-source class
libraries that implement most of JDK 1.2. Details are 384 projecpagé

There is a Java IDE for Emacs at[fifi2EE projectitd

Java portability is excellent at the language level. Incomplete library implementations (especially older
JDK 1.1 versions that don’t support the newer JDK 1.2) can be an issue. Java implementations are
available for UnixWindows,MacOSand many otheplatforms.

Java’s best side is that it comes close enough to achieving write-once-run-anywhere to be useful as an
OS-independent environment of its own. Its worst side is that the Java 1/Java 2 split compromises that
goal in deeply frustratingiays.

Casestudy: FreeNet

Freenet is a peer-to-peer networking project that is intended to make censorship and content
suppression impossible. There [grajectwebsit¢ Applications envisioned by the developerslude:

® Uncensorable dissemination of controversial information: Freenet protects freedom of speech by
enabling anonymous and uncensorable publication of material ranging from grassroots alternative
journalism to banneéxposes.
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e Efficient distribution of high-bandwidth content: Freenet’s adaptive caching and mirroring is
being used to distribute Debian Linux softwapslates.

® Universal personal publishing: Freenet enables anyone to have a website, without space
restrictions or compulsory advertising, even if you don’t owomputer.

Freenet addresses these goals by providing a virtual space in which to publish documents that is not
tied to any specific machine. Published information and Freenet’'s own internal data indexes are
replicated and distributed across the network in such a way that even Freenet administrators don’t
know at any given time where all the physical copies are located. Privacy for people browsing or
submitting to Freenet is protected by strangptography.

Java was good choice for this project for at least two reasons. First: the goals of the project put a heavy
premium on having compatible implementations on the widest possible variety of machines, so Java's
high portability is a dominating advantage. Second: the nature of the project is such that a the network
APl is important, and Java has a strong one built

C is traditional for infrastructure projects of this kind that have high performance demands, but the
lack of a standardized network API would have made porting a significant difficulty. C++ would have
had the same difficultylcl, Perl,or Pythonmight have reduced the porting burden, but at a greater
cost in performance. Emacs Ligpuld have been painfully slow and totaihappropriate.

EmacsLisp

Emacs Lisp is a scriptingnguageused to program the behavior of the Emacs text editor. Its first
public release was it984.

Emacs Lisp is not a general-purpose language in quite the same way as the others surveyed in this
chapter; while it is powerful enough to theoretically be used as such, it is traditionally employed only
to write control programs for the Emacs editor itself and does not communicate well with other
software.

Nevertheless, there is a significant range of applications in which Emacs Lisp is more effective than
anything else. Many of these have to do with front-ending development tools such as the C compiler
and linker, make(1), version-control systems, and symbolic debuggers; we’ll discuss these in Chapter

13(Tools

More generally, Emacs is to pattern- or syntax-directeactiveediting whatPerlis to
pattern-directetbatchediting. Any application that involves interactively hacking a special file format

or text database is an excellent candidate to be prototyped (and possibly delivered) as an Emacs mode
(an Emacs Lisp program that specializes the Emacs edighiavior).

Emacs Lisp is also valuable for building applications that have to be closely integrated with a text
editor, or which function primarily as text browsers with some editing capability. User agents for
email andUsenetnewsall in this category. So do certain kinds of database &nds.

Emacs Lisp is a Lisp. It follows as the night the day that it manages memory automatically and is far
more elegant and powerful than most conventional language, or indeednomsventional

languages; it can compete withvaor Pythonon this level and laugh & or C++, Perl,shell orTcl.

Lisp’s perennial problem of lacking a standardized OS binding for portability is solved by the Emacs
core, which in effecis its OSbinding.



Lisp’s other perennial problem, of being a resource hog, is no longer a real issue on modern machines.
Parody expansions like ‘Emacs Makes A Computer Slow’ and ‘Eventually Munches All Computer
Storage’ used to be common (in fact the Emacs distribution itself includes a list of them). But many
other commonly-used categories of programs (such as web browsers) have nowadays grown larger and
more complex than Emacs, which has come to appear rather modecatagarison.

The definitive Emacs Lisp referencelise GNU Emacs Lisp Referenmoanual which may be
browseable through your Emacs’s ‘info’ help system. If not, it can be downloaded frlbBFHETH
If you find that impenetrabl&Vriting GNU Emac&xtension may help.

Portability of Emacs Lisp programs is excellent. Emacs implementations are available for all Unixes,
the Microsoft operatingystemsandMacOS.,.

Summing up, Emacs Lisp’s best point is that it combines an excellent base lahig@geith
powerful domain primitives for text mainipulation. Its worst point is poor performance and difficulties
using it in communication with oth@rograms.

For more information, see the discussion of Emacs under editors in thehapter.
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Trends for the Future

This chapter was first drafted in 1997; at time of writing it is early 2003. That is a long enough time

base that the relative positions of the languages we surveyed above have changed somewhat since first

writing, indicating adoption trends that may suggest what their futures will be like. (Community size is
an important predictor of the quality and amount of work that will go into improving the most-used
open-source implementations of these languages; both growth and decline teseltodieforcing.)

The following table gives a rough indication of the trends in usage. These figures are soft in several
ways: notably, SourceForge’s query interface doesn’t permit filtering on OS and language
simultaneously, so some of these numbers represent MacOS and Windows projects. The effect is
probably to exaggerate++ andJava’sshare considerably. However, Unix-based projects dominate
sufficiently (by about a 3:1 ratio) that the effect on the figures for other languages is probably not too
distorting.

Table 12.1. Language choices on SourceForge, DecemBe?2

C 9694
C++ 9166
Shell 994
Perl 4137
Tcl 616

Python 2060

Java 7301

EmacsLisp | ?

Broadly speakingC andC++ and Emacsisp have remained stable across this time period, appealing
to much the same constituencies in 2001 as they did in 1997. C has gained slowly at the expense of
older conventional languages such as FORTRAN; C++, on the other hand, has lost some ground to
Java.

Perlusagdnas grown respectably, but the language itself has been stagnant for some time or more.
Perl's internals are notoriously grubby; it's been understood for years that the language’s
implementation needs to be rewritten from scratch, but an attempt in 1999 failed and another seems
presently stalled in early 2003. Nevertheless, Perl is still the 800-pound gorilla of sdaptngges,

and dominates web scripting a@¢l.

The figures indicate thdicl has been in a period of relative decline, or at least of diminishing

visibility. In 1996 a widely-reported and plausible estimate of community sizes held that for every
Pythonhacker there were fivecl hackers and twelvieerlhackersToday the SourceForge figures
suggest those ratios are about 3:1:7. However, Tcl is reported to be very widely used for scripting of
specialized components in several industries, including electronic design automatic, radio & TV
broadcasting, and the filimdustry.



As the figures indicatd?ythonhas risen in popularity as rapidly Bl has fallen. Though theerl
community is still twice the size of Python’s, a visible tendency of the brightest Perl hackers to
migrate to Python has been rather ominous for the former language — especially as there is no
migration at all in the oppositiirection.

Javahas become widely used at sites already invested iM&uasystemstechnologgnd is in

increasing deployment as an instructional language in undergraduate computer science curricula (a
role for which it is extremely well suited). Elsewhere, however, it is only marginally more popular
than it was in 1997. Sun’s determination to stick to a proprietary licensing model has prevented the
major breakout many observers then predicted; undexandin the wider open-source community
Java has not made the headway against C that @¢@shere.

No new general-purpose language has emerged to seriously challenge those we’ve surveyed here. PHP
is making inroads in web development, challenging Perl CGls (as well as ASP and serdavajide

but is almost never used for standalone programming. Non-Boscdialects, a once-promising area

that seemed headed for a renaissance in the mid-1990s, have continued to fade. Recent efforts such as
Ruby (a sort of Python-Perl-Smalltalk cross developed in Japan) and Squeak (an open-source

Smalltalk port) look promising, but have so far neither attracted hackers far outside their development
groups nor demonstrated staypmwer.



Choosingan X toolkit

An issue related to choice of language is choice of X toolkit for GUI programming. Recall the

discussion in Chaptfir(Philosophy)of how X separates mechanism from policy. Each possible
choice of toolkit will give you a slightly different look afekl.

Your choice of X toolkit will be connected to your choice of application language in two ways: first
because some languages ship with a binding to a preferred toolkit, and second because some toolkits
only have bindings to a limited setlahguages.

Java,of course, has its own cross-platfrom toolkits built in, so your choice will be between AWT
(universally deployed) and Swing (more capable, more complex, slower, and only in JDK 1.2/Java 2).
The remainder of this section focuses on the other languages wsunasged.

Similarly, if you're using Tcl, Tk comes bundled. There probably is not a lot of point in evaluating
alternatives.

The once-ubiquitous Motif toolkit is effectively dead. It couldn’t keep with the newer toolkits
distributed without license fees or restrictions. These attracted more developer effort until they surged
past closed-source toolkits in capability and features; nowadays, the competition is all$ougen

The four toolkits to consider seriously in 2003 are Tk, GTK, Qt, and wxWindows. All four have ports
on MacOS and Windows, so any choice will give you the capability to do cross-plaéeaiopment.

The Tk toolkit is the oldest of the four and has the advantage of incumbency; it's native in Tk and
bindings to it are shipped with the stock versiofPgthon.Libraries to provide language bindings to

Tk are generally available f@ andC++. Unfortunately, Tk also shows its age in that its standard
widget set is both limited and rather ugly. On the other hand, the Tk Canvas widget has capabilities
that other toolkits still match only witthfficulty.

GTK began life as a replacement for Motif, used withGheIP . It is now the preferred toolkit of the
GNOME project and is used by hundreds of GNOME applications. The native APl is C; bindings are
available forC++, Perl,andPython,but do not ship with the stock language distributions. It's the only
one of these four with a nativeldihding.

Qt is a toolkit associated with the KDE project. It is nativeG+a library; bindings are available for
PythonandPerlbut do not ship with the stock interpreters, Qt has a reputation for having the
best-designed and most expressive API of these four, but adoption was initially hindered by
controversy over early versions of the Qt license and is still slowed down by the lackbofding.

wxWindows is also nativelZ++ with bindings available iPerlandPython.The wxWindows

developers emphasize their support for cross-platform development heavily and appear to regard it as
the main selling point of the toolkit. Another is that it is actually a wrapper around the native (GTK,
Windows, and MacOS 9) widgets on each platform, so applications written using it retain a native

look andfeel.

As of early 2003 few detailed comparisons have been written, but a web search for “X toolkit
comparison” may turn up some useful hits. The table following summarizes the git#g of

Table 12.2. Summary of XToolkits



Bindings
Toolkit Native language| Shippedwith

C | C++ | Perl | Tcl | Python
Tk Tcl Tcl, Python Y Y Y |Y
GTK C - Y Y Y |Y
Qt C++ - -y Y |Y |Y
wxWindows| C++ - -lY Y |Y |Y

Architecturally, these libraries are all written at about the same abstraction level. GTK and Qt use a
slot-and-signal apparatus for event-handling so similar that ports between them have been reported to
be almost trivial. Your choice among them will probably be conditioned more by the availability of
bindings to your chosen development language than anytsag
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The Tactics of Development
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Unix is user-friendly — it's just choosy about who its frieads

--Anonymous



A developer-friendly operatingsystem

Unix has a long-established reputation as a good environment to develop under. It's well equipped
with tools written by programmers for programmers; these automate away many of the grubby little
tasks that would otherwise distract you from concentrating on the most important (and most
enjoyable!) aspect of development — ydesign.

While all the tools you'll need are there and individually well documented, they’re not knit together by
an integrated development environment (IDE). Finding and assembling them into a kit that suits your
needs has traditionally taken a consideraifflert.

If you're used to a good IDE — the kind of GUI-driven combination of editor, configuration-manager,
compiler, and debugger now common on Macintosh and Windows systems — the Unix approach may
seem casual, murky, and primitive. But there’s actually methid in

IDEs make a lot of sense for single-language programming in a tool-poor environment. If what you're
doing is confined to grinding o@ or C++ code by hand and the yard, they're quite appropriate.
Under Unix, however, your languages and implementation options are a lot more varied. It's common
to use multiple code generators, custom configurators, and many other standard antbolstom

IDEs do exist under Unix (there are several good open-source ones, including emulations of the major
Macintosh and Windows IDEs). But it's difficult to control an open-ended variety of programming

tools with them, and they’re not much used. Unix encourages a more flexible style, one less
exclusively centered on the edit/compile/deap.

In this chapter we’ll introduce you to the tactics of development under Unix — building code,
managing code configurations, profiling, debugging, and how to automate away a lot of the drudgery
associated with these tasks so you can concentrate on the fun parts. As usual, we’ll focus more on the
architectural picture than the how-to details. Whenwauathow-to details, most of the tools in this

chapter are well described Riogramming with GNUSoftward[Loukides]

Unix programmers traditionally learn how to use these tools by osmosis from other programmers, and
by exploration over a period of years. If you're a novice, pay careful attention; we’re going to try to
jump you over a bhig section of the Unix learning curve by showing you what is possible right at the
outset. If you are an experienced Unix programmer in a hurry, you can skip this chapter — but maybe
you shouldn’t. There might just be some bit of useful lore here that even you don’t know, and our
discussion of the size of emacs below ties right back into some fundamental principles of the Unix
approach.



Choosingan editor

The first and most basic tool of development is a text editor suitable for or modifying and writing
programs.

There are literally dozens of text editors available under Unix; writing one seems to be one of the
standard finger exercises for budding open-sonaoiers Most of these are ephemera, not suitable

for extended use by anyone other than their authors. A few are emulations of non-Unix editors, useful
as transition aids for programmers used to other OSs. You can browse through a wide variety at
SourceForge or ibiblio or any other major open-soarchive.

For serious editing work, there are two editors that together completely dominate the Unix
programming scene. Each is available in a couple of minor variant implementations, but has a standard
version you can rely on finding on any modern Unix system. These two editors arecvmacsl

These two editors express sharply contrasting design philosophies, but both are extremely popular and
command great loyalty from identifiable core user populations. Surveys of Unix programmers
consistently indicate about a 50/50 split between them, with all other editors tegristgring.

Beware: choice of editor, like choice of language, is a personal issue which arouses great zeal in fans
of particular editors and editor variants. Arguing which is ‘best’ is pointless and leads to flame wars.
You have beewarned!

We won't go into the blow-by-blow details of their commands here (we’ll give you references that will
do that). Instead we’ll survey their capabilities with a view to helping you choose the best fit for your
style.

vi: lightweight but limited

Thevieditor is a small, fast, lightweight program. Its commands are generally single keystrokes, and it
is particularly well suited to use bguch-typists.

The name of vi is an abbreviation for ‘visual editor’ and is pronouhasskye/(not/vie/ and
definitelynot/siksf)

Stock vi doesn’t have mouse support, editing menus, macros, or assignable key bindings. Its partisans
consider the lack of these features a feature; they like an editor with a simple, constant interface that
they can program into their fingertips and forget about consciously. On this view, one of vi's most
important virtues is that you can start editing immediately on a new Unix system without having to
carry along your customizations or worrying that the default command bindings will be dangerously
different from what you're uset.

One characteristic of vi that beginners tend to find frustrating is a result of its terse single-keystroke
commands. It hasraodedinterface — you are either in command mode or text-insertion mode. In the
latter, most commands other than the ESC mode exit and perhaps the arrow keys don't operate; in the
former, typing text will be interpreted as commands and do odd (and probably destructive) things to
your content.

Vi was not quite the earliest screen-oriented editor; that palm goes to the Randedfan ran on
Version 6 Unix in the 1970s. But vi is the longest-lived screen-oriented editor built for Unix that is
still in use, and is a hallowed part of Uniiadition.



The original vi was the version shipped with 4.2BSiix in the early 1980s; it is now obsolete. Its
replacement was ‘new vi’ which shipped with 4.4BSD and is found on modern 4.4BSD variants such

as BSD/OS, FreeBSD and NetBSD systems. There are several variants with extended features, notably
vim, vile, elvis, and xvi; of these vim is probably the most popular and is found onLtimarxy

systems. All the variants are pretty similar and share 85% or so of their command set unchanged from
the originalvi.

Ports of vi are available for the Windows operasggtemsandMacOS.

Most introductory Unix books include a chapter describing basic vi usage. One place a vi FAQ is
available is thiditor FAQ/vif you can find many other copies with a WWW keyword search for page
titles including “vi” and"FAQ".

Emacs: heavy metalediting

Emacs stands for ‘EDiting MAcroS’ (pronounce it /ee’maks/). It is undoubtedly the most powerful
programmer’s editor in existence. It's a big, feature-laden program. While on modern hardware you
won't see noticeable delays in its response to basic commands, it's expensive to start up. What it gives
you in exchange is ultimate flexibility and customizability. As we observed in Clfieter

section on Emacs Lisp, Emacs has an entire programming language inside it that can be
used to write arbitrarily powerful editfunctions.

The keystroke commands used in Netscape/Mozille and Internet Explorer text windows (in forms and
the mailer) are copied from the stock emacs bindings for basic text editing. Unligmacs doesn’t

have modes; instead, commands are normally control characters or prefixed with an ESC. However, in
emacs it is possible to bind just about any key sequence to any command, and commands may be stock
or customized Lisprograms.

This power comes at a price in complexity. To use a customized emacs you have to carry around the
Lisp files that define your personal emacs preferences. And learning how to customize emacs is an
entire art in itself. Emacs is correspondingly harder to learnvihan

However, investing the time to learn can yield rich rewards in productivity. Emacs supports many
powerful editing modes that offer help with the syntax of various programming languages and
markups. We'll see later in this chapter how emacs can be used in combination with other
development tools to give capabilities comparable to (and in many ways surpassing) those of
conventionalDEs.

The standard emacs, universally available on modern Unixes, is GNU Emacs; this is what generally
runs if you type ‘emacs’ to a Unix shell prompt. GNU Emacs sources and documentation are available
at thdFree Software Foundation archisiga

The only major variant is called XEmacs; it has a better X interface but otherwise quite similar
capabilities (it forked from Emacs 19). XEmacs haoe d. Emacs (and Emacs Lisp) is
universally available under modern Unixes. It has been ported to MS-DOS (where it works poorly)
and Windows 95 and NT (where it is said to work reasonabl}).

Emacs includes its own interactive tutorial and very complete on-line documentation; you'll find
instructions on how to invoke both on the default emacs startup screen. A good introduction on paper
is Learning GnuEmacgCameron eal.}



http://www.faqs.org/faqs/editor-faq/vi/
ftp://gnu.org/pub/gnu
http://www.xemacs.org/

The benefits of knowingboth

Many people regularly use both vi and emacs tend to use them for different things, and find it valuable
to knowboth.

One of those many people is me. | learned vi first, back around 1982 a few years
before modern Emacses existed. Despite liking Emacs better for most uses, | have
never let vi fall out of myingertips.

--Eric S.Raymond

In general, vi is best for small jobs — quick replies to mail, simple tweaks to system configuration,
and the like. It is especially useful when you're using a new system (or a remote one over a network)
and don’t have your emacs customization filaady.

Emacs comes into its own for extended editing sessions in which you have to handle complex tasks,
modify multiple files, and use results from other programs during the session. For programmers using
X on their console (which is typical on modern Unixes), it's normal to start up Emacs shortly after
login time in a large window and leave it running forever, possibly visiting dozens of files and even
running programs in multiple Emasabwindows.

Fanatic partisans of vi castigate emacs for being bloated, slow, and too complicated for normal human
minds to comprehend. Fanatic partisans of emacs dismiss vi as a toy with a rigid and primitive design,
unsuitable for serious editing. Neither side is entirely right or wrong. An intelligent developer will

learn to match the right tool to tfab.

Is Emacs an argument against the Uniphilosophy?

One of the standard arguments against emacs is that it is a large and intricate program, light-years
removed from the lucid simplicity of design that the founders of Unix advocated (and in fact emacs
did not originate under Unix, but was invented by Richar&tlimanwithin a very different culture
that flourished at the MIT Artificial Intelligence Lab in th&70s).

In defense of emacs, it's as much larger thiaas it is for good reasons — because it's much more

than just an editor. Emacs supports dealing with all things textual in one context — programs, mail,
news, debugger symbols. Emacs-like pure editors can be and have been built that are comparable in
size to vi, but what people expect Emacs to be is an emitieonment.

From another angle, the oft-heard charge that emacs is bloated is as unfair as saying that /bin/sh is
bloated because collection of all shell scripts on a system is large. Emacs could be considered a virtual
machine or framework around a collection of small, sharp tools (Emacs modes) that happen to be
written inLisp. Variants ofvi , by contrast, have to build in complex C-level support for simple
operations like reflowingext.

But the pro-Emacs arguments can be turned around; perhaps emacs demonstrates that there is a class
of applications for which the prescriptions of the Unix philosophy are inadequate. This argument is
worth examining, because it goes to the heart of some fundamental design dilemmas in software
engineering. When should we give in to the temptation to writprioigrams?

The contrast with vi tells us less than one might wish; vi is drastically smaller than emacs but is by no
means a simple program itself. The truly Unix-minimalist way of editing would be vi’s ancestor ed(1),
a line-oriented editor still used in scripts. It is theoretically complete as a way of bashing text files



around, but has an interface so austere that nobody buthtenpsonhimseltlaims to have used it
routinely since about 1985 (and Ken is widely suspected jokbe).

Clearly something about editors tends to push them in the direction of increasing complexity. In the
case of vi, that something is not hard to identify; it's the desire for convenience. While ed(1) may be
theoretically adequate, very few people (other than perhaps Ken) would forgo screen-oriented editing
to make a statement about softwhleat.

Emacs has a more complicated agenda. Its designers wanted to build a truly programmable editor that
could have task-related intelligence customized into it for hundreds of different specialized editing
jobs. It’s just not possible to do that and steall.

And this points us at the Unix answaerrite a big program only when it is clear by demonstration that
nothing else wildo — that is, when attempts to partition the problem have been made and failed. This
maxim implies an astringent skepticism about large programs, and a strategy for avoiding them: look
for the small-program solution first. If a single small program won't do the job, try building a toolkit

of cooperating small programs to attack it. Only if both approaches fail are you free (in the Unix
tradition) to build a large program without feeling you have failed the debigjtenge.

Let's grant that there are good reasons for Emacs to be large. The appropriate Unix-philosophy
guestion about Emacs (and about vi, for that matter) is then: is it larger than it needs to be to do its
job?

This is a book about Unix, not about emacs, so (having made our philosophical point) we won't try to
settle that question here. In Chajitér(Usernterfaceg)we examined emacs’s design again from an

angle that may illuminate this question — as a case study in the use of embedded scripting languages.
Perhaps the size of the Emacs Lisp library shouldn’t be held against iglafter




Make: automating your developmentrecipes

Program sources by themselves don’t make an application. The way you put them together and
package them for distribution matters, too. Unix provides a tool for semi-automating these processes;
make(1). Make(1) is covered in most introductory Unix books. For a really thorough reference, you
can consulManaging Projects WitMake[Oram&Talbot] If you're using GNU make(1) (the most
advanced make, and the one normally shipped with open-source Unixes) the treatment in
Programming with GNSoftward[Loukides] may be better in some respects. Most Unixes that carry
GNU make will also support GNU Emacs; if yours does you will probably find a complete make
manual on-line through Emacs’s info; documentasigstem.

Ports of GNU make to DOS and Windows are available fronk8te

Basictheory of make(1)

If you're developing irC or C++, an important part of the recipe for building your application will be
the collection of compilation and linkage commands needed to get from your sources to working
binaries. Entering these commands is a lot of tedious detail work, and most modern development
environments include a way to put them in command files or databases that can automatically be
re-executed to build yowapplication.

Unix’s make(1) program, the original of all these facilities, was designed specifically to help C
programmers manage these recipes. It lets you write down the dependencies between files in a project
in one or more ‘makefiles’. Each makefile consists of a seripsooluctions each one tells make that

some given target file depends on some set of source files, and says what to do if any of the sources
are newer than the target. You don’t actually have to write down all dependencies, as the make
program can deduce a lot of the obvious ones from file namesxsatsions.

For example, you might put in a makefile that the bimayprog depends on three object files
myprog.o , helper.o , andstuff.o . If you have source file:iyprog.c , helper.c , and

stuff.c , make(1) will know without being told that each .o file depends on the corresponding .c
file, and supply its own standard recipe for how to build a .o file fronfile..c

When you rummake in a project directory, the make program looks at all productions and timestamps
and does the minimum amount of work necessary to make sure derived files adatep to

You can read a good example of a moderately complex makefile in the souffeésHimailn the
subsections below we’ll refer toagain.

No discussion of make(1) would be complete without an acknowledgement that it includes one of the
worst design botches in the history of Unix. The use of tab characters as a required leader for
command lines associated with a production means that the interpretation of a makefile can change
drastically on the basis of invisible differences in whitespace. It is a matter of record that the original
author of make realized this was an error early on, but felt he could not change it; after all, at that point
he already had twelvesers...


http://www.tuxedo.org/~esr/fetchmail

Make in non-C/C++ Development

Make(1) is not just useful not for C/C++ recipes, however. Scripting languages like those we described

in Chapte[l2 (Language$inay not require conventional compilation and link steps, but there are often
other kinds of dependencies that make(1) can helpwibu

Suppose, for example, that you actually generate part of your code from a specification file, using one
of the techniques from Chapj@({Generatior})You can use make(1) to tie the spec file and the
generated source together. This will ensure that whenever you change the spec and remake, the
generated code will automatically bebuilt.

It's quite common to use makefile productions to express recipes for making documentation as well as
code. You'll often see this approach used to automatically generate Postscript or other derived
documentation from masters written in some markup language like HTML or one of the Unix
document-macro languages we’'ll survey in ChdpéiDocumentation)In fact, this sort of use is so
common that it's worth illustrating with a castidy.

Casestudy: Make for document-file translation

In thefetchmailmakefile, for example, you'll see three productions that relate files nEA@d
FEATURESandNOTESo HTML sources fetchmail-FAQ.html, fetchmail-features.html, and
design-notes.html.

The HTML files are meant to be accessible on the fetchmail web page, but all the HTML markup
makes them uncomfortable to look at unless you're using a browser. SAGhHEEATURESand
NOTESare flat-text files meant to be flipped through quickly with an editor or pager program by
someone reading the fetchmail sources themselves (or, perhaps, distributed to FTP sites that don’t
support WWWaccess).

The flat-text forms can be made from their HTML masters by using the common open-source program
lynx(1). Lynx is a WWW browser for text-only displays, but invoked with-thenp option it
functions pretty well as an HTML-to-ASClbrmatter.

With the productions in place, the developer can edit the HTML masters without having to remember
to manually rebuild the flat-text forms afterwards, secure in the knowledgeARQRFEATURESand
NOTESWill be properly rebuilt whenever they areeded.

Utility productions

Some of the most heavily used productions in typical Makefiles don’t express file dependencies at all.
They’re ways to bundle up little procedures that a developer wants to mechanize, like making a
distribution package or removing all object files in order to do a build §aratch.

There is a well-developed set of conventions about what utility productions should be present and how
they should be named. Following these will make your Makefile much easier to understasd.and

all

Your all production should make every executable of your project. Usualblltpeoduction
doesn’t have an explicit rule; instead it refers to all of your project’s top-level targets (and, not
accidentally, documents what those are). Conventionally this should be the first production in
your makefile, so it will the one executed when the developer typ&e with noargument.



clean

Remove all files (such as binary executables and object files) that are normally created when you
make all. Don’t remove any derived files that came with the distributionvever.

dist

Make a source archive (usually with the tar(1) program) that can be shipped as a unit and used to
rebuild the program on another machine. This target should do the equivalent of depemling on

so that anake dist automatically rebuilds the whole project before making the distribution

archive — this is a good way to avoid last-minemebarrassments!

distclean

Throw away everything but what you would include if you were bundling up the source with
make dist. This may be the the sameraake cleanbut should be included as a production of its
own anyway, to document what's going on. When it's different, it usually differs by throwing
away local configuration files that aren’t part of the normal ‘make all’ build sequence (such as

those generated by autoconf(1); we'll talk about autoconf(1) in C on
portability).

realclean

Throw away everything you can rebuild using the makefile. This may be the sama&eas

distclean, but should be included as a production of its own anyway, to document what'’s going
on. When it's different, it usually differs by throwing away files that are derived but (for whatever
reason) shipped with the project souraagway.

install

Install the project’s executables and documentation in system directories so they will be
accessible to general users (this typically requires root privileges). Initialize or update any
databases or libraries that the executables require in orfilgrction.

uninstall

Remove files installed in system directories by ‘make install’ (this typically requires root
privileges). The presence of an uninstall feature implies a kind of humility that experienced Unix
hands look for as a sign of thoughtéidsign.

Working examples of all these are available for inspection ifetoctemailmakefile By studying all of
them together you will see a pattern emerge, and (not incidentally) learn much about the fetchmail
package’s structure. One of the benefits of using these standard productions is that they form an
implicit roadmap of theiproject.

But you need not limit yourself to these utility productions. Once you master make(1), you'll find
yourself more and more often using the makefile machinery to automate little tasks that depend on
your project file state. Your makefile is a convenient central place to put these; using it makes them
readily available for inspection and avoids cluttering up your workspace with triviabttifgs.



Generating makefiles

One of the subtle advantages of Unix make over the dependency databases built into many IDEs is that
makefiles are simple text files — files that can be generat@iddmgyams.

In the mid-1980s it was fairly common for large Unix program distributions to include elaborate
custom shell scripts that would probe their environment and use the information they gathered to
construct custommakefiles.

These custom configurators reached absurd sizes. | wrote one once that was 3000
lines of shell, about twice as large as any single module in the program it was
configuring.

--Eric S.Raymond

The community eventually said “Enough!”; and various people set out to write tools that would
automate away part or all of the process of maintaining makefiles. There are two issues these tools
generally tried t@ddress:

One isportability. Makefile generators are commonly built to run on many different hardware

platforms and Unix variants. They generally try to deduce things about the local system (including
everything from machine word size up to which tools, languages, service libraries, and even document
formatters it has available). They then try to use those deductions to write makefiles that exploit the
local system'’s facilities and compensate foqiterks.

The other igule automation It's possible to deduce a great deal about the dependencies of a
collection of C sources by analyzing the sources themselves (especially by looking at what include
files they use and share). Many makefile generators do this in order to mechanically generate make
dependencies.

Each different makefile generator tackles these objectives in a slightly different way. There have
probably been a dozen or more generators attempted, but most proved inadequate or too difficult to
drive or both, and only a few are still in live use. We'll survey the major ones here. All are available as
open-source software on theernet.

makedepend

There have been several small tools that tackled the rule automation part of the problem exclusively.
This one, distributed along with the X window system fidii, is the fastest and most useful and
comes preinstalled under all modern Unixes, includingialixes.

Makedepend simply takes a collection®$ources and generates dependencies for the corresponding
.0 files from their #include directives. These can be appended directly to a makefile, and in fact
makedepend is defined to do exadhst.

Makedepend is useless for anything but C projects. It doesn't try to solve more than one piece of the
makefile-generation problem. But what it does it does quitié

Makedepend is sufficiently documented by its manual page. If yountgpenakedependat a
terminal window on any X console you will quickly learn what you need to know about invibking



imake

Imake was written in an attempt to mechanize makefile generation for the X waydtem(it uses
makedepend as one of its components). It tackles both the rule-automation and pgutablétys.

The imake system effectively replaces conventional makefiles with Imakefiles. These are written in a
more compact and powerful notation which is (effectively) compiled into makefiles. The compilation
uses a rules file which is system-specific and includes a lot of information about the local
environment.

Imake is well suited to X's particular portability and configuration challenges and universally used in
projects that are part of the X distribution. However, it has not achieved much popularity outside the X
developer community. It's hard to learn, hard to use, hard to extend, and produces generated makefiles
of mind-numbing size ancbmplexity.

Imake’s programs will be available on any Unix that supports X, includimgx. There has been one
heroic efforf[DuBois] to make the mysteries of imake comprehensible to non-X-programming
mortals. These are worth learning if you are going to gwogramming.

autoconf

Autoconf was written by people who had seen and rejected the imake approach. It generates
per-projeciconfigure  shellscripts that are like the old-fashioned custom script configurators. These
configure  scripts can generate makefiles (among dttiegs).

Autoconf is focused on portability and does no built-in rule automation at all. Although it is probably
as complex as imake, it is much more flexible and easier to extend. Rather than relying on a
per-system database of rules, it generetedigure  shell code that goes out and searches your
system foithings.

Eachconfigure  shellscript is built from a per-project template that you have to write, called
configure.in . Once generated, though, tenfigure  script will be self-contained and can
configure your project on systems that don’t carry autocoit§élf.

The autoconf approach to makefile generation is like imake’s in that you start by writing a makefile
template for your project. But autoconfakefile.in files are basically just makefiles with
placeholders in them for simple text substitution; there’s no second notation to learn. If you want rule
automation, you must take explicit steps to call makedepend(1) or some similar tool — or use
automake(1).

Autoconf is documented by an on-line manual in the FBfds format. The source scripts of
autoconf are available from the FSF archive site, but are also preinstalled on many Whinuand
versions. You should be able to browse this manual through your Emacssysteim.

Despite its lack of direct support for rule automation, and despite its generally ad-hoc approach, in
early 2003 autoconf is clearly the most popular of the makefile generators, and has been for some
years. It has eclipsed imake and driven at least one major competitor (metaconfig)saut of

A referenceGNU Autoconf, Automake ahdbtool is availablg\Vaughan etl.]|We’ll have more to
say about autoconf, from a slightly different angle, in Chgid€¢Portability] on portability.




automake

Automake is an attempt to add imake-like rule automation as a layer on top of autoconf(1). You write
Makefile.am templates in a broadly imake-like notation; automake(1) compiles them to
Makefile.in files, which autoconf'sonfigure  scripts then operatan.

Automake is still relatively new technology in early 2003. It is used in several FSF projects but has not
yet been widely adopted elsewhere. While its general approach looks promising, it is as yet rather
brittle — works when used in very stereotyped ways but tends to break badly if you try to do anything
unusual withit.

Complete on-line documentation is shipped with automake, which can be downloaded from the FSF
archivesite.



Version-control systems

Why versioncontrol?

Code evolves. As a project moves from first-cut prototype to deliverable, it goes through multiple
cycles in which you explore new ground, debug, and then stabilize what you’ve accomplished. And
this evolution doesn’t stop when you first deliver for production. Most projects will need to be
maintained and enhanced past the 1.0 stage, and will be released ruléple

Code evolution raises several practical problems that can be major sources of friction and drudgery —
thus a serious drain on productivity. Every moment spent on these problems is a moment not spent on
getting the design and function of your projeght.

Perhaps the most importantéversion if you make a change, and discover it's not viable, how can
you revert to a code version that is known good? If reversion is difficult or unreliable, it's hard to risk
making changes at all (you could tank the whole project, or make many hours of painful work for
yourself).

Almost as important ishangetracking You know your code has changed; do you know why? It's
easy to forget the reasons for changes and step on them later. If you have collaborators on a project,
how do you know what they have changed while you weleoking?

Another isbugtracking It's quite common to get new bug reports for a particular version after the
code has mutated away from it considerably. Sometimes you can recognize immediately that the bug
has already been stomped, but often you can’t. Suppose it doesn’t reproduce under the new version.
How do you get back the state of the code for the old version in order to reproduce and unit’2rstand

To address these problems, you need procedures for keeping a history of your project, and annotating
it with comments that explain the history. If your project has more than one developer, you also need
mechanisms for making sure developers don't step on each otbesisns.

Version control by hand

The most primitive (but still very common) method is all hand-hacking. One snapshots the project
periodically by manually copying everything in it to a backup. One includes history comments in
source files. One makes verbal or email arrangements with other developers to keep their hands off
certain files while you hacthem.

The hidden costs of this hand-hacking method are high, especially when (as frequently happens) it
breaks down. The procedures take time and concentration; they’re prone to error, and tend to get
slipped under pressure or when the project is in trouble — that is, exactly when they areadedt

Automated version control

To avoid these problems, you can usesion-controkystemVCS), a suite of programs that
automates away most of the drudgery involved in keeping an annotated history of your project and
avoiding modificatiorconflicts.



Most VCSs share the same basic logic. To use one, you stagibieringa collection of source files

— that is, telling your VCS to start archive files describing their change histories. Thereafter, when
you want to edit one of these files, you haveheckoutthe file — assert an exclusive lock on it.
When you're done, yoaheckin the file, adding your changes to the archive, releasing the lock, and
entering a change comment explaining what giolu

The history of the project is not necessarily linear. All VCSs in common use actually allow you to
maintain a tree of variant versions (for ports to different machines, say) with tools for merging
branches back into the main "trunkérsion.

Most of the rest of what a VCS does is convenience, labeling, and reporting features surrounding these
basic operations — tools which allow you to view differences between versions, or to group a given

set of versions of files as a nametkasewhich can be examined or reverted to at any time without

losing laterchanges.

VCSs have their problems. The biggest one is that using a VCS involves extra steps every time you
want to edit a file, steps which developers in a hurry tend to want to skip if they have to be done by
hand. Near the end of this chapter we’ll discuss a way to solverthis

Another problem is that there are some kinds of natural operations that tend to confuse VCSs.
Renaming files is a notorious trouble spot; it's not easy to automatically ensure that a file’s version
history will be carried along with it when itienamed.

Despite these difficulties, VCSs are a huge boon to productivity and code quality in many ways, even
for small single-developer projects. They automate away many procedures that are just tedious work.
They help a lot in recovering from mistakes. Perhaps most importantly, they free programmers to
experiment by guaranteeing that reverting to a known-good state will alwagsye

(VCSs, by the way, are not merely good for program code; the manuscript of this book was maintained
as a collection of files under RCS while it was beingten.)

Unix tools for versioncontrol

Historically, three VCSs have been of major significance in the Unix world, and we’ll survey them
here. For an extended introduction and tutorial, codgptying RCS an@CCgBolinger&Bronson]

SCCS

The first was SCCS, the original Source Code Control System developed by Bell Labs around 1980
and featured in Systeth Unix. SCCS seems to have been the first serious attempt at a unified
source-code management system; concepts that it pioneered are still found at some level in all later
ones, including commercial Unix and Windows products su€lesrCase.

SCCSs itself is, however, how obsolete. It was proprietary Bell Labs software; superior open-source
alternatives have since been developed, and most of the Unix world has converted to those. SCCS is
still in use to manage old projects at some commercial vendors, but can no longer be recommended for
newprojects.

No complete open-source implementation of SCCS exists. A clone called CSSC is in development
under the sponsorship of tR&F.



RCS

The superior open-source alternatives began with RCS (Revision Control System), born at Purdue
University a few years after SCCS and originally distributed with 4.3BSD Unig logically similar

to SCCS but has a cleaner command interface, and good facilities for grouping together entire project
releases under symbol@ames.

RCS is the currently the most widely used version control system in the Unix world. Most other Unix
version-control systems use it as a back end or underlayer. It is well suited for single-developer or
small-group projects hosted at a single developrsieop.

The RCS sources are maintained and distributed by the FSF. Free ports are available for Microsoft
operatingsystemsand VAXVMS.

CVS

CVS (Concurrent Version System) began life as a front end to RCS developed in the early 1990s, but
the model of version control it uses was different enough that it immediately qualified as a new design.
Modern implementaions don’t rely &*CS.

Unlike RCS and SCCS, CVS doesn'’t exclusively lock files when they’re checked out. Instead, it tries
to reconcile non-conflicting changes mechanically when they’re checked back in, and requests human
help on conflicts. The design works because patch conflicts are much less common than one might
intuitively think.

CVS’s interface is significantly more complex than RCS’s, and it needs a lot more disk space. These
make it a poor choice for small projects. On the other hand, CVS is well suited to large
multi-developer efforts distributed across several development sites connected by the Internet. CVS
tools on a client machine can easily be told to direct their operations to a repository located on a
differenthost.

The open-source community makes heavy use of CVS for projects such as GNOME and Mozilla.
Typically, such CVS repositories allow anyone to check out sources remotely. Anyone can, therefore,
make a local copy of a project, modify it, and mail change patches to the project maintainers. Actual
write access to the repository is more limited and has to be explicitly granted by the project
maintainers. A developer who has such access can perform a ‘commit’ option from his modified local
copy, which will cause the local changes to get made directly to the respotatory.

You can see an example of a well-run CVS repository, accessible over the InterndGNOME]
CVSsitg This site illustrates the use of CVS-aware browsing tools such as Bonsai, which are very
useful in helping a large and decentralized group of developers coordinatedtieir

The social machinery and philosophy accompanying the use of CVS is as important as the details of
the tools. The assumption is that projeci$ be open and decentralized, with code subject to peer
review and inspection even by developers who are not officially members of the grojgut

The CVS sources are maintained and distributed bl $the

There are significant problems with CVS. Some are merely implementation bugs, but one basic
problem is that your project’s file namespace is not versioned in the same way changes to files
themselves are. Thus, CVS easily gets confused by file renamings, deletioadditiods.


http://cvs.gnome.org/
http://cvs.gnome.org/

Other version control systems

CVS's design problems are sufficient to have created demand for a better open-source VCS. Several
such efforts are under way as of mid-2001. The most notable of these are Aegjithaacion.

[Aegid has the longest history of any of these alternatives, has hosted its own development since 1991,
and is a mature production system. It features a heavy emphasis on regression-tegsthdedioa.

[Subversiois positioned as "CVS done right", with the known design problems fully addressed, and
probably has the best near-term prospect of repld2i,.

ThelBitKeepefproject explores some interesting design ideas related to change-sets and multiple
distributed code repositories. Its non-open-source license is, however, controversial, and has
significantly retarded the acceptance of pheduct.


http://www.pcug.org.au/~millerp/aegis/aegis.html
http://subversion.tigris.org/
http://www.bitkeeper.com/

Run-time debugging

Anyone who has been programming longer than a week knows that getting the syntax of your
programming language right is teasypart of debugging. The hard part comes after that, when you
need to understand why your syntactically correct program doesn’'t behaveegpgot

The Unix tradition encourages developers to anticipate this problem by designing for transparency; —
in particular, designing programs in such a way that their internal data flows are readily monitored
with the naked eye and simple tools, and readily memadigeledand. This is a topic we covered in

derail in Chaptd? (Transparency)Design for transparency is valuable both in preventing bugs and

for easing the runtime-debuggitask.

Design for transparency is not, however, sufficient in itself. When debugging a program at runtime,
it's extremely useful to be able to examine the state of your program at runtime, set breakpoints, and
execute pieces of it down to the single-statement level in a controlled way. Unix has a long tradition of
hosting programs to help you with this. Open-source Unixes feature a powerful one called gdb (yet
another FSF project) that suppdtandC++debugging.

Perl,Python,Java,and Emacsisp all support standard packages or programs (included with their
base distributions) which allow you to set breakpoints, control execution, and do general
runtime-debugger thing3cl, designed as a small language for small projects, has no such facility
(though it does have a trace facility that can be used to watch variahlesag).

Remember the Unix philosophy. Spend your time on quality, not the low-level details, and automate
away everything you can — including the detail work of run-tttekugging.



Profiling

As a general rule, 90% of the execution time of your program will be spent in 10% of its code.
Profilers are tools that help you identify the 10% of hot spots that constrain the speed of your program.
This is a good thing for makingféster.

But in the Unix tradition, profilers have a far more important function. They enableogon
optimize the other 90%! This is good, and not just because it saves you workalljgaluable
effect is that not optimizing that 90% holds down global complexity and reBugss

You may recall that we quoted DonddduthobservingPremature optimization is the root of all
evilin ChaptefL (Philosophy) and that RolPike and KernThompsorhad a few pungent observations
on the topic as well. These were the voices of experience. Do good design. think abouigiihat's
first. Tune for efficiencyater.

Profilers help you do this. If you get in the good habit of using them, you can get rid of the bad habit
of premature optimization. They don't just change the way you work; they change héfinkou

Profilers for compiled languages rely on instrumenting object code, so they are even more
platform-dependent than compilers. On the other hand, a compiled-language profiler doesn’t care
about the source language of the programs it instruments. Under Unix, the single profiler gprof(1)
handlesC, C++, and all other compilethnguages.

Perl,Python,and Emacsisp have their own profilers included in their basic distributions; these are
portable across all platforms on which the host languages themselv@avamas built-in profiling.
Tcl has no profiling support at.



Emacsas the universal frontend

One of the things the emacs editor is very good at is front-ending for other development tools. In fact,
nearly every tool we've discussed in this chapter can be driven from within an emacs editor sessions
through front ends that give them greater utility than they would have running standalone. Read and
learn — not just about emacs, but about the subtle art of creating synergy batwggams.

To illustrate this, we’ll walk you through the use of these tools with emacs in a typical build/test/debug
cycle. For details on them, see emacs’s own on-line help system; the purpose of this section is to give
you an overview and help motivate you to leaore.

Emacsand make(1)

Make, for example, can be started with the emacs com&Ba@dx compile followed by an Enter.
This command will run make(1) in the current directory, capturing the output in an euffars

This by itself wouldn't be very useful. But emacs’s make mode knows about the error message format
(featuring a source file and line number) emitted by Whoompilers and many oth&ols.

If anything run by the make issues error messages, the con@tlaxid will try to parse them and
take you to each error location in turn, popping open a window on the appropriate file and taking the
cursor to the errdine.

This makes it extremely easy to step through an entire build fixing any syntax that has been broken
since the lastompile.

Emacsand run-time debugging

For catching runtime errors, Emacs offers similar integration with your symbolic debugger — that is,

you can use an emacs mode to set breakpoints in your programs and examine their runtime state. You
run the debugger by sending it commands through an emacs window. Whenever the debugger stops on
a breakpoint, the message the debugger ships back about the source location is parsed and used to pop
up a window on the source round tireakpoint.

Emacs’s Grand Unified Debugger mode supports all the major C debuggers; gdb(1), sdb(1), dbx(1),
and xdb(1). It also supporerlsymbolic debugging via the perldb module, and the standard
debuggers for bothavaandPython.Facilities built into Emacs Lisp itself support ‘electric debugging’
of Emacs Lisgrode.

At time of writing (early 2003) there is not yet supportTot debugging from within Emacs. The
design of Tcl is such that it seems unlikely tcalded.

Emacsand versioncontrol

Once you've corrected your program’s syntax and fixed its runtime bugs, you may want to save the
changes into a version-controlled archive. Yawebeen using version control to avoid embarrassing
accidents, haven't you? ... No? ... Yloaven't?

If you've only tried running version-control tools from the shell, it's hard to blame you for sloughing
off this important step. Who wants to have to remember to run checkout/checkin commands around
every editoperation?



Fortunately, emacs offers help here too. Code built into emacs implements a simple-to-use front end
for SCCS, RCS, or CVS. The single comm&ibx v v tries to deduce the next logical

version-control operation to do on the file you are visiting. The operations this includes are registering
a file, checking out and locking it, and checking it back in (accepting a change comment in a pop-up
buffer).

Emacs also helps you view the change history of version-controlled files, and helps you revert out
changes you don’t want. It makes it easy to apply version-control operations to whole sets or project
directory trees of files. In general, it does a pretty good job of making version-control opertions
painless.

The implications of this are larger than you might guess before you've gotten used to it. You'll find,
once you get used to fast and easy version control, that it's extremely liberating. Because you know
you can always revert to a known-good state, you'll find you feel more free to develop in a more fluid
and exploratory way, trying lots of changes out to see dfieicts.

Emacsand Profiling

Surprise...this is perhaps the only phase of the development cycle in which emacs front-ending does
not offer substantial help. Profiling is an intrinsically batchy operation — instrument your program,

run it, view the statistics, speed-tune the code with an editor, repeat. There isn't much room for emacs
leverage in the profiling-specific parts of tigigcle.

Nevertheless, there's a good tutorial reason for us to think about emacs and profiling. If you found
yourself analyzing #ot of profiling reports, it might pay you to write a mode in which a mouse click

or keystroke on a profile report line visited the source of the relevant function. This actually would be
fairly easy to do using the emacs ‘tags’ code. In fact, by the time you read this, some other reader may
already have written such a mode and contributed it to the public emadsasede

The real point here is again a philosophical one. Don’'t drudge — drudging wastes your time and
productivity! If you find yourself spending a lot of time on the low-level mechanical parts of
development, step back. Apply the Unix philosophy. Use your toolkit to automate or semi-automate
thetask.

Then give back something in return for all you've inherited, by posting your solution as open-source
software to the Internet. Help liberate your fellow programmers from drudgery,

Like an IDE, only better...

Earlier on we asserted that emacs can give you capabilities resembling those of a conventional
integrated development environment, only better. By now you should have enough facts in hand to see
how that can be true. You can run entire development projects from inside emacs, driving the

low-level mechanics with a few keystrokes and saving yourself the mental effort and disruption of
constantly switchingontexts.

The emacs-enabled development style trades away some capabilities of advanced IDES, like graphical
views of program structure. But those are frills. What emacs gives you in return is flexibility and
control. You're not limited by the imagination of the IDE designer — you can tweak, customize, and
add task-related intelligence using embicp.



Finally, you're not limited to accepting what one small group of IDE developers sees fit to support. By
keeping an eye on the open-source community you can leverage the work of thousands of your peers,
emacs-using developers facing challenges much like yours. This is much more effective — and much

morefun.



Chapter 14.Re-Use
On Not Reinventing the Whesel
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When the superior man refrains from acting, his force is felt for a thoundes.
--Tao Te Ching (as populartypistranslated)

Reluctance to do unnecessary work is a great virtue in programmers. If the Chinese sage Lao-Tze were
alive today and still teaching the way of the Tao, he would probably be mistranslated as: when the
superior programmer refrains from coding, his force is felt for a thousand miles. In fact, recent
translators have suggested that the Chinesewernveithat has traditionally been rendered as

“inaction” or “refraining from action” should probably be read as “least action” or “most efficient

action” or “action in accordance with natural law”, which is an even better description of good
engineeringractice!

Remember the Rule of Economy. Re-inventing fire and the wheel for every new project is terribly
wasteful. Thinking time is precious and very valuable relative to all the other inputs that go into
software development; accordingly, it should be spent solving new problems rather than rehashing old
ones for which known solutions already exist. This attitude gives the best return both in the “soft”
terms of developing human capital and in the “hard” terms of economic return on development
investment.

The most effective way to avoid reinventing the wheel is to borrow someone else’s design and
implementation of it. In other words, to reusele.

Unix is designed to support re-use at every level from individual library modules up to entire
programs, which Unix helps you script and recombine. Systematic re-use is one of the most important
dstinguishing behaviors of Unix progammers, and the experience of using Unix should teach you a
habit of trying to prototype solutions by combining existing components with a minimum of new
invention, rather than rushing to write standalone code that will only beonsed

The virtuousness of code reuse is one of the great apple-pie-and-motherhood verities of software
development. But many developers entering the Unix community from a basis of experience in other
operating systems have never learned (or have unlearned) the habit of systematic re-use. Waste and
duplicative work is rife, even though it seems to be against the interests both of those who pay for code
and those who produce it. Understanding why such dysfunctional behavior persists is the first step



towards changing.



The tale of J. RandomNewbie

Why do programmers reinvent wheels? There are many reasons, reaching all the way from the
narrowly technical to the psychology of programmers and the economics of the software production
system. The damage from the endemic waste of programming time reaches all theseuwalkls as

Consider the first, formative job experience of J. Random Newbie, a programmer fresh out of college.
Let us assume that he (or she) has been taught the value of code re-use and is brimming with youthful
zeal to applyt.

Newbie’s first project puts him on a team building some large application. Let's say for the sake of
example that it's a GUI intended to help end-users intelligently construct queries for and navigate
through a large database. The project managers have assembled what they deem to be a suitable
collection of tools and components. including not merely a development language but many libraries
aswell.

The libraries are crucial to the project. They package many services — from windowing widgets and
network connections on up to entire subsystems like interactive help — that would otherwise require
immense quantities of additional coding, with a severe impact on the project’s budget andléseship

Newbie is a little worried about that ship date. He may lack experience, but helillatiand

heard a few war stories from experienced programmers. He knows management has a tendency to
what one might euphemistically call “aggressive” schedules. Perhaps he has read Ed Y &wakbn’s
March[Yourdon] which as long ago as 1996 noted that a majority of projects are on a time and
resource budget at least 50% too tight, and that the trend is for that squeezeacget

But Newbie is bright and energetic. He figures his best chance of succeeding is to learn to use the tools
and libraries that have been handed to him as intelligently as possible. He limbers up his typing
fingers, hurls himself at the challenge...and ertielis

Everything takes longer and is more painful than he expects. Beneath the surface gloss of their demo
applications, the components he is re-using seem to have edge cases in which they behave
unpredictably or destructively — edge cases his code tickles on a daily basis. He often finds himself
wondering what the library programmers were thinking. He can't tell, because the components are
inadequately documented — often by technical writers who aren’t programmers and don't think like
programmers. And he can’t read the source code to learn what it is actually doing, because the libraries
are opaque blocks of object code under propridicepses.

Newbie has to code increasingly elaborate workarounds for component problems, to the point where
the net gain from using the libraries starts to look marginal. The workarounds make his code
progressively grubbier. He probably hits a few places where a library simply cannot be made to do
something crucially important that is theoretically within its specifications. Sometimes he is sure there
is some way to actually make the black box perform, but he can't figure out vwghat it

Newbie finds that as he puts more strain on the libraries, his debugging time rises exponentially. He
His code is bedeviled with with crashes and memory leaks that have trace paths leading into the
libraries, into code he can’t see or modify. He knows most of those trace paths probably lead back out
to his code, but without source it is vey difficult to trace through the bits he didtét



Newbie is growing horribly frustrated. He had heard in college that in industry, a hundred lines of
finished code a week is considered good performance. He had laughed then, because he was many
times more productive than that on his class projects and the code he wrote for fun. Now it's not funny
any more. He is wrestling not merely with his own inexperience but with a cascade of problems
created by the carelessness or incompetence of others — problems he can't fix, but can only work
around.

The project schedule is slipping. Newbie, who dreamed of being an architect, finds himself a
bricklayer trying to build with bricks that won'’t stack properly and which crumble under load-bearing
pressure. But his managers don’t want to hear excuses from a novice programmer; complaining too
loudly about the poor quality of the components is likely to get him in political trouble with the senior
people and managers who selected them. And even if he could win that battle, changing components
would be a complicated proposition involving batteries of lawyers peering narrowly at licersnsg

Unless Newbie is very, very lucky, he is not going to be able to get library bugs fixed within the
lifetime of his project. In his saner moments, he may realize that the working code in the libraries
doesn’t draw his attention the way the bugs and omissions do. He'd love to sit down for a clarifying
chat with the component developers; he suspects they can’t be the idiots their code sometimes
suggests, just programmers like him working within a system that frustrates their attempts to do the
right thing. But he can’t even find out who they are — and if he could, the software vendor they work
for probably wouldn't let them talk toim.

In desperation, Newbie starts making his own bricks — simulating less stable library services with

more stable ones and writing his own implementations from scratch. His replacement code, because he
has a complete mental model of it that he can refresh by rereading, tends to work relatively well and be
easier to debug that the combination of opaque components and workaroapeds.

Newbie is learning a lesson; the less he relies on other peoples’ code, the more lines of code he can get
written. This lesson feeds his ego. Like all young programmers, deep down he thinks he is smarter

than anyone else. His experience seems, superficially, to be confirming this. He begins building his

own personal toolkit, one better fitted to hiand.

Unfortunately, the roll-your-own reflexes Newbie is acquiring are a short-term local optimization that
will cause long-term problems. He may get more lines of code written, but the actual value of what he
produces is likely to drop substantially relative to what it would have if he were doing successful

re-use. More code does not equal better code, not when it's written at a lower level and largely devoted
to reinventingwheels.

Newbie has at least one more demoralizing experience in store, when he changes jobs. He is likely to
discover that he can't take his toolkit with him. If he walks out of the building with code he wrote on
company time, his old employers could well regard this as intellectual-property theft. His new
employers, knowing this, are not likely to react well if he admits to reusing any of fusd#d

Newbie could well find his toolkit is useless even if he can sneak it into the building at his new job.
His new employers may use a different set of proprietary tools, languages, and libraries. It is likely he
will have to learn a somewhat new set of techniques and reinvent a new set of wheels each time he
changegprojects.

Thus do programmers have re-use (and other good practices that go with it, like modularity and
transparency) systematically conditioned out of them by a combination of technical problems,
intellectual-property barriers, politics, and personal ego needs. Multiply J. Random Newbie by a
hundred thousand, age him by decades, and have him grow more cynical and more used to the system



year by year. There you have the state of much of the software industry, a recipe for enormous waste
of time and capital and human skill — eusforeyou factor in vendors’ market-control tactics,
incompetent management, impossible deadlines, and all the other pressures that make doing good
work difficult.

The professional culture that springs from J. Random Newbie’s experiences will reflect them in the
large. Programming shops will have a ferocious Not Invented Here complex. They will be toxically
ambivalent about code re-use, pushing inadequate but heavily-marketed vendor components on their
programmers in order to meet schedule crunches, while simultaneously rejecting re-use of the
programmers’ own tested code. They will churn out huge volumes of ad-hoc, duplicative software
produced by programmers who are glumly resigned to never being able to fix anything but their own
individual pieces.

The closest equivalent of code re-use to emerge in such a culture will be a dogma that code once paid
for can never be thrown away, but must instead be patched and kluged even when all parties know that
this it would be better to scrap and start anew. The products of this culture will become progressively
more bloated and buggy over time even when every individual involved is trying his or her hardest to
do goodwork.



Transparency as the key tare-use

We field-tested the tale of J. Random Newbie on a number of experienced programmers. If you the
reader are one yourself, we expect you responded to it much as they did — with groans of recognition.
If you are not a programmer but you manage programmers, we sincerely hope you found it
enlightening. The tale is intended to illustrate the ways that different levels of pressure against re-use
reinforce each other to create a magnitude of problem not linearly predictable from any individual
cause.

So used are most of us to the background assumptions of the software industry that it can take
considerable mental effort before the primary causes of this problem can be separated from the
accidents of narrative. But they are not, in the end, senyplex.

At the bottom of most of J. Random Newbie’s troubles (and the large-scale quality problems they
imply) is transparency—er, rather, the lack of it. You can't fix what you can't see inside. In fact, for
any software with a non-trivial API, you can't even propeldgwhat you can’t see inside.
Documentation is inadequate not merely in practice but in principle; it cannot convey all the nuances
that the codembodies.

In Chapte[7 (Transparency)we observed how central this quality is to good software.

Object-code-only components destroy the transparency of a software system, On the other hand, the
frustrations of code re-use are far less likely to bite when the code you are attempting to reuse is
available as source code. Well-commented source code is its own documentation. Bugs in source code
can be fixed. Source can be instrumented and compiled for debugging to make probing its behavior in
obscure cases easier. And if you need to change its behavior, youtbah do

There is another vital reason to demand source. A lesson Unix programmers have learned through
decades of constant change is that source code lasts, object code doesn’t. Hardware platforms change,
service components like support libraries change, the operating system grows new APIs and
deprecates old ones. Everything changes — but opaque binary executables cannot adapt to change.
They are brittle, cannot be reliably forward-ported, and have to be supported with increasingly thick

and error-prone layers of emulation code. They lock users into the assumptions of the people who built
them. You need source because, even if you have neither the intention nor the need to change the
software, you will have to rebuild it in new environments to keeymining.

The importance of transparency and the code-legacy problem are reasons that you should require the
code you re-use to be open to inspectionrandificationffd . It is not a complete argument for what

is now called ‘open source’; because ‘open source’ has rather stronger implications than simply
requiring code to be transparent amsible.

ﬁ NASA, wghich consciously bults software intended to have a service life of decades, has learned
to insist on source-code availability for all space aviosafsvare.



From re-use to opersource

In the early days of Unix, components of the operating system, its libraries, and its associated utilities
were passed around in source code; this openness was a vital part of the Unix culture. We described in
Chaptef2 (History] how, when this tradition was disrupted after 1984, Unix lost its initial momentum.

We have also described how, a decade later, the rise GNbktoolkit andLinuxprompteda

rediscovery of the value of open-souotele.

Today, open-source code is again one of the most powerful tools in any Unix programmer’s Kkit.
Accordingly, though the explicit concept of “open source” and the most widely used
open-sourcelicensese decades younger than Unix itself, it's important to understand both in order to
do leading-edge development in today’s Ucikture.

Opensourcerelateto code re-use in much the way romantic love relates to sexual reproduction — it's
possible to explain the former in terms of the latter, but to do so is to risk overlooking much of what
makes the former interesting. Open source does not reduce to merely being a tactic for supporting
re-use in software development. It is an emergent phenomenon, a social contract among developers
and users that tries to institutionalize several advantages related to transparency. As such, there are
several different ways to approaching an understandiitg of

Our historical description earlier in this book chose one angle by focusing on causal and cultural
relationships between Unix and open source. We'll discuss the institutions and tactics of open-source
development in Chaptf7 (OpenSource) In discussing the theory and practice of code re-use, it's
useful to think of open source more specifically, as a direct response to the problems we narratized in
the tale of J. Randoiewbie.

Software developers want the code they use to be transparent. Furthermore, they don’t want to lose
their toolkits and their expertise when they change jobs. They get tired of being victims, fed uop with
being frustrated by blunt tools and intellectual-property fences and having to repeatedly re-invent the
wheel.

These are the motives for open source that flow from J. Random Newbie’s painful initiatory
experience with re-use. Ego needs play a part here, too; they give pervasive emotional force to what
would otherwise be a bloodless argument about engineering best practices. Software developers are
like every other kind of craftsman and artificer; they want, not so secretly, to be artists. They have the
drives and needs of artists, including the desire to have an audience. They not only want to re-use
code, they want their code to be reused. There is an imperative here that goes beyond and overrides
short-term economic goal-seeking and that cannot be satisfied by closed-source poftsiarton.

Open source is a kind of ideological pre-emptive strike on all these problems. If the root of most of J.
Random Newbie’s problems with reuse is the opacity of closed-source code, them the institutional
assumptions that produce closed-source code must be monkeywrenched. If corporate territoriality is a
problem, it must be attacked or end-run until the corporations have caught on to how self-destructive
their territorial reflexes are. Open source is what happens when code re-use gets a flagragpd an

Accordingly, since the late 1990s, it is no longer makes any sense to try to recommend strategies and
tactics for code re-use without talking about open source, open-source practices, open-source
licensing, and the open-source community. Even if those issues could be separated elsewhere, they
have become inextricably bound together in the Wroxd.



In the remainder of this chapter, we’ll survey various issues associated with re-using open-source
code: evaluation, documentation, and licensing. In ChAgté®perSourcdwe’ll discuss the
open-source development model more generally, and examine the conventions you should follow

when you are releasing code for otherage.




The best things in life areopen

Literally terabytes of Unix sources for systems and applications software, service libraries, GUI
toolkits and hardware drivers are available for the taking on the Internet. You can have most built and
running in minutes with standard tools. The mantidigure; make; makeinstall; usually you

have to be root to do the instpHrt.

Programmers from outside the Unix world are often prone to tipek-sourcéor ‘free’ software) is
necessarily inferior to the commercial kind, that it's shoddily made and unreliable and will cause one
more headaches than it saves. They miss an important point — in general, open-source software is
written by people who care about it, need it, use it themselves, and are putting their individual
reputations among their peers on the line by publishing it. They also tend to have less of their time
consumed by meetings, retroactive design changes, and bureaucratic overhead. They are therefore both
more strongly motivated and better positioned to do excellent work than wage slaves toiling

Dilbert-like to meet impossible deadlines in the cubicles of proprietary sofhwases.

Furthermore, the open-source user community (those peers) is not shy about nailing bugs, and its
standards are high. Authors who put out substandard work experience a lot of social pressure to fix
their code or withdraw it, and can get a lot of skilled help fixing it if they choose. As a result, mature
open-source packages are generally of high quality and often functionally superior to any proprietary
equivalent. They may lack polish and have documentation that assumes much, but the vital parts will
usually work quitavell.

Besides the peer-review effect, another reason to expect better quality is this: in the open-source world
developers are never forced by a deadline to close their eyes, hold their noses, and ship. A major
consequent difference between open-source practice and elsewhere is that a release level of 1.0
actually means the software is ready to use. In fact, a version number of 0.90 or above is a fairly
reliable signal that the code is production-ready, but the developers are not quite ready to bet their
reputations olit.

If you are a programmer from outside the Unix world, you may find this claim difficult to believe. If

so, consider this: on modern Unixes, @mmpileritself is almost invariably open-source. The Free
Software Foundation’s GNU Compil@ollection(GCC) is so powerful, so well documented, and so
reliable that there is effectively no proprietary Unix compiler market left, and it has become normal for
Unix vendors to port GCC to their platforms rather than do in-house cordgilefopment.

The way to evaluate apen-sourc@ackage is to read its documentation and skim some of its code. If
what you see appears to be competently written and documented with care, be encouraged. If there
also is evidence that the package has been around for a while and incorporated substantial user
feedback, you may bet that it is quite reliable (butdegtvay).

A good gauge of maturity and the volume of user feedback is the number of people besides the

original author mentioned in tiREADME&ANd project news or history files in the source distribution.
Credits to lots of people for sending in fixes and patches are signs both of a significant user base
keeping the authors on their toes, and of a conscientious maintainer who is responsive to feedback and
will take corrections.

It's also a good omen when the software has its own web page, on-line FAQ (Frequently-Asked
Questions) list, and an associated mailing listsenetnewsgrougd.hese are all signs that a live and
substantial community of interest has grown up around the software. On web pages, recent updates
and an extensive mirror list are reliable signs of a project with a vigorous user community. Packages



that are duds just don'’t get this kind of continuing investment, because they can’titeward

Here are some examples of what web pages associated with high-quality open-source software look
like:
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Distribution-makers for Linux and other open-source Unixes carry a lot of specialist expertise about
which projects are best-of-breed — that’s a large part of the value they add when they integrate a
release. If you are already using an open-source Unix, something else to check is whether the package
you are evaluating is already carried by ydigtribution.


http://www.gimp.org/
http://www.gnome.org/
http://www.kde.org/
http://www.python.org/
http://www.kernel.org/
http://www.postgresql.org/
http://xfree86.org/

Where should | look?

Because there is so much open source available in the Unix world, skill at finding code to re-use can
have an enormous payoff — much greater than is the case for other operating systems. Such code
come in many forms — individual code snippets and examples, code libraries, utilities to be re-used in
scripts. Under Unix most code re-use is not a matter of actual cut-and-paste into your program — in
fact, if you find yourself doing that, there is almost certainly a more graceful mode of re-use that you
aremissing.

One of the most useful skills to cultivate under Unix is a good grasp of all the different ways to glue
together code, so you can use the Rule of Composition. Library linkage is only the beginning; there are
plugins, slave processes, shellouts, client/server relationships, and many other ways to re-use code in
your programs even when it's written in a different implementdéinguage..

To begin to grasp something of the amazing wealth of resources out there, surf to SourceForge, ibiblio,
and Freshmeat.net. Other sites as important as these three may exist by the time you read this book,
but all three of these have shown continuing value and popularity over a period of years, and seem
likely to endure.

[SourceFordés a demonstration site for software designed to support collaborative development,
complete with associated project-management services. It is not merely an archive but a free
development-hosting service, and in early 2003 is undoubtedly the largest single hub of open-source
activity in theworld.

The Linux archives dbiblio] were the largest in the world before SourceForge. The ibiblio archives

are passive, simply a place to publish packages. It does however have a better interface to the World
Wide Web than most passive sites (the program that creates its Web look and feel was one of our case
studies in the discussion Berlin Chapte[l2 (Languaged) It's also the home site of the Linux
Documentation Project, which maintains many documents that are excellent resources for Unix users
anddevelopers.

a system dedicated to providing release announcements of new software, and new
releases of old software. It gives users and third parties the capability to attach revedessts.

These three sites are general-purpose and contain code in many languages, but most of their content is
C or C++. There are also sites specialized around some of the interpreted languages we’ll look at in

Chaptef[Z(Canguage3)

The CPAN archive is the central repository for useful free code in Perl. It is easily reached from the

Perl homepagg

The Python Software Activity makes an archivdPgthonsoftwarend documentation available at the
[Python HomeéPage

Many Javaappletand pointers to other sites featuring free Java software are made available at the
Java Appletpage

One of the most valuable ways you can invest your time as a Unix developer is to spend time
wandering around these sites learning what is available for you to use. The coding time you save may
be yourown!


http://www.sourceforge.net/
http://www.ibiblio.org/
http://www.freshmeat.net/
http://www.perl.com/perl
http://www.dstc.edu.au/www.python.org
http://java.sun.com/applets/

Browsing the package metadata is a good idea, but don’t stop there. Sample the code, too. You'll get a
better grasp on what the code is doing, and be able to use ieffemtively.

More generally, reading code is an investment in the future. You'll learn from it — new techniques,
new ways to partition problems, different styles and approaches. Both using the code and learning
from it are valuable rewards. Even if you don’t use the techniques in the code you study, the improved
definition of the problem you get from looking at other peoples’ solutions may well help you invent a
better one of youown.

Read before you write; develop the habit of reading code. There are seldom any completely new
problems, so it is almost always possible to discover code that is close enough to what you need to be
a good starting point. Even when your problem is genuinely novel, it is likely to be genetically related

to a problem someone else has solved before, so the solution you need to develop is likely to be related
to some pre-existing one all.



What are the issues in using open-sourc®ftware?

There are three major issues in using or re-ugpen-sourcesoftwarguality, documentation, and
licensing terms. We’ve seen above that if you exercise a little judgement in picking through your
alternatives, you will generally find one or more of quite respectplaéty.

Documentation is often a more serious issue. Many high-quality open-source packages are less useful
than they technically ought to be due to poor documentation. Unix tradition encourages a rather
hieratic style of documentation, one which (while it may technically capture all of a package’s
features) assumes that the reader is intimately familiar with the application domain and reading very
carefully.

Thus, for example, manual pages for Unix utilities often consist of a terse one-sentence summary of
the utility’s function, followed by a bewildering list of minutely-described command-line options,
followed by a cursory description of its theory of operation, followed by references to related utilities.
This sort of thing makes an excellent reference but a very daumtiaduction.

The best advice we can give is: pay careful attention. What you need to know will probably be there,
but you're likely to have to read the entire document carefully and think about each sentence in
context before achievingnlightenment.

It is worth doing a web search for phrases including the software package, or topic keywords, and the
string “HOWTO?” or “FAQ”. These queries will often turn up documentation more useful to novices
than the mapage.

The most serious issue in reusing open-source software (especially in any kind of commercial product)
is understanding what obligations, if any, the package’s license puts upon you. In the next two sections
we’ll discuss this issue idetail.



Licensingissues

Anything that is not public domain has a copyright, possibly more than one. Under the Berne
Convention (which has been U.S. law since 1978), the copyright does not have to be explicit. That is,
the authors of a work hold copyright even if there is no copyngtite.

Who counts as an author can be very complicated, especially for software that has been worked on by
many hands. This is why licenses are important. By setting out the terms under which material can be
used, they grant rights to the users that protect them from arbitrary actions by the ctjdiefst

In proprietary software, the license terms are designed to protect the copyright. They're a way of
granting a few rights to users while reserving as much legal territory as possible for the owner (the
copyright holder). The copyright holder is very important, and the license logic so restrictive that the
exact technicalities of the license terms are usuwalignportant.

In open-source software, the situation is usually the exact opposite; the copyright exists to protect the
license. The only rights the copyright holder always retains are to enforce free redistribution.

Otherwise, only a few rights are reserved and most choices pass to the user. In particular, the copyright
holder cannot change the terms on a copy you already have. Therefore, in open-source software the
copyright holder is almost irrelevant — but the license terms aramegrtant.

Normally the copyright holder of a project is the current project leader or sponsoring organization.
Transfer of the project to a new leader is often signaled by changing the copyright holder. However,
this is not a hard and fast rule; many open-source projects have multiple copyright holders, and there is
no instance on record of this leading to lggalblems.

Some projects choose to assign copyright to the Free Software Foundation, on the theory that it has an
interest in defending open source and lawyers availableito do

What qualifies as opersource

For licensing purposes, we can distinguish several different kinds of rights that a license may convey.
Rights to copy and redistribute, rights to use, rights to modify for personal use, and rights to
redistribute modified copies. A license may restrict or attach conditions to any ofigiese

ThelOpen Sourc®efinitionis the result of a great deal of thought about what makes software “open
source” or (in older terminology) “free”. Its constraints on licensing redae

® An unlimited right to copy bgranted.
® An unlimited right to redistribute bgranted.
® An unlimited right to modify for personal use tpeanted.

The guidelines prohibit restrictions on redistribution of modified binaries; this meets the needs of
software distributors, who need to be able to ship working code without encumbrance. It allows
authors to require that modified sources be redistributed as pristine sources plus patches, thus
establishing the author’s intentions and an “audit trail” of any changethbys.


http://www.opensource.org/osd.html

The OSD is the legal definition of the “OSI Certified Open Source” certification mark, and as good a
definition of “free software” as anyone has ever come up with. All of the standard licenses (MIT,
BSD, Artistic, GPL/LGPL, and MPL) meet it (though some, like GPL, have other restrictions which
you should understand before choosthg

Note that licenses which allow noncommercial use only do not qualify as open-source licenses, even if
they are based on “GPL” or some other standard license. Such licenses discriminate against particular
occupations, persons, and groups, which the OSD’s Claiasbiés.

Clause 5 was written after years of painful experience. Non-commercial-use licenses turn out to have
the problem that there is no bright-line legal test for what sort of resistribution qualifies as
‘commercial’. Selling the software as a product qualifies, certainly. But what if it were distributed at a
nominal price of zero in conjunction with other software or data, and a price is charged for the whole
collection? Would it make a difference whether the software were essential to the function of the
wholecollection?

Nobody knows. The very fact that no-commercial-use licenses create uncertainty about a
redistributor’s legal exposure is a serious strike against them. One of the objectives of the OSD is to
ensure that people in the distribution chain of OSD-conforming software do not need to be in
consultation with intellectual-property lawyers to know what their rights are. OSD forbids complicated
restrictions against persons, groups, and occupations partly so that people dealing with collections of
software will not face a combinatorial explosion of sightly differing (and perhaps conflicting)
restrictions on what they can do with

This concern is not hypothetical, either. One important part of the open-source distribution chain is
CD-ROM distributors who aggregate it in useful collections ranging from simple anthology CDs up to
bootable operating systems. Restrictions that would make life prohibitively complicated for CD-ROM
distributors, or others trying to spread open-source software commercially, havierioideen.

Standard open-sourcdicenses

Here are the standard open-source license terms you are likely to encounter. The abbreviations listed
here are in generake.

MIT X Consortium license (like BSD’s but with no advertisiegjuirement)

Berkeley Regents copyright (usedB8D code)

|Artistic Licensé

Same terms as Perl Artistiicense

GPL

IGNU General Publiticensé



http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/artistic-license.html
http://www.gnu.org/copyleft.html
http://www.gnu.org/copyleft.html

Library (or ‘Lesser’)GPL

Mozilla PublicLicense

All of the standard licenses conform to a meta-license called the “Open Source Definition” which is
widely accepted in the open-source community as an articulation of the social contract among
open-source developers.

We'll discuss these licenses in more detail, from a developer’s point of view, in

For purposes of this chapter, the only important distinction among them is whether they are
infectious or not, A license igfectiousif it requires that any derivative work of the licensed software
also be placed under isrms.

Under these licenses, the only kind of open-source use you should really worry about is actual
incorporation of the free-software code into a proprietary product (as opposed, say, to merely using
open-source development tools to make your product). If you're prepared to include proper license
acknowledgements and pointers to the source code you're using in your product documentation, even
direct incorporation should be safe provided the license isfeatious.

The GPL is both the most widely used and the most controversial infectious license. And it is clause
2(b), requiring that any derivative work of a GPLed program itself be GPLed, that causes the
controversy. (Clause 3(b) requiring licensors to make source available on physical media on demand
used to cause some, but the Internet explosion has made publishing source code archives a la 3(a) so
cheap that nobody worries about the source-publication requirememosay)

Nobody is quite certain what that the “contains or is derived from”in clause 2(b) means, nor what

kinds of use are protected by the “mere aggregation” language a few paragraphs later. Part of the
problem is that U.S. statute law itself does not define what derivation is; it has been left to the courts to
hammer out definitions in case law, and computer software is an area where this process (as of early
2003) has not evdregun.

At one end, the “mere aggregation” certainly excludes shipping GPLed software on the same media
with your proprietary code, provided they do not link to or call each other. They may even be tools
operating on the same file formats or on-disk structures; that, under copyright law, would not make
one a derivative of thether.

At the other end, splicing GPLed code into your proprietary code, or linking GPLed object code to
yours, certainly does make your code a derivative work and require iGBlbed.

It is generally believed that one program may execute a second program as a subprocess without either
becoming thereby a derivative work of thiher.

The case that causes dispute is dynamic linking of shared libraries. The Free Software Foundation’s
position is that if a program calls another program as a shared library, then that program is a derivative
work of the library. Some programmers think this is overreaching. There are technical, legal, and
political arguments on both sides which we won’t rehearse here. Since the Free Software Foundation
wrote and owns the license, it would be prudent to behave as if FSF’s position is correct until a court
rulesotherwise.


http://www.opensource.org/licenses/MPL-1.0.html

Some people think the 2(b) language is deliberately designed to infect every part of any commercial
program that uses even a snippet of GPLed code; such people refer to it as the GPV, or “General
Public Virus”. Others think the “mere aggregation” language covers everything short of mixing GPL
and non-GPL code in the same compilation or linkage

This uncertainty has caused enough agitation in the open-source community that the FSF had to
develop the special, slightly more relaxed “Library GPL” (which they have since renamed the “Lesser
GPL") to reassure people they could continue to use runtime libraries that came with FSF's GNU
compilercollection.

You'll have to choose your own interpretation of clause 2(b); most lawyers will not understand the
issues involved, and there is no case law. As a matter of empirical fact, the FSF has (up to early 2003,
at least) never sued anyone under the GPL since it was founded in 1984 — but it has enforced the GPL
by threatening lawsuit, in all cases up to early 2003 successfully. And, as another empirical fact,
Netscape includes the source and object of a GPLed program with the commercial distribution of its
Netscape Navigatdorowser.

The MPL and LGPL are infectious in a more limited way than GPL. They explicitly allow linking
with proprietary code without turning into a derivative work, provided all traffic between the GPLed
and non-GPLed code goes through a library API or other well-deifiterdace.

When you need dawyer

This section is directed to commercial developers considering incorporating software that falls under
one of these standard licenses into closed-squozhicts.

Having gone through all this legal verbiage, the expected thing for us to do at this point is to utter a
somber disclaimer to the effect that we are not lawyers, and that if you have any doubts about the
legality of something you want to do with free software, you should immediately cotewljer.

With all due respect to the legal profession, this would be fearful nonsense. The language of these
licenses is as clear as legalese gets — they were written to be clear — and should not be at all hard to
understand if you read it carefully. The lawyers and courts are actually more confused than you are.
The law of software rights is murky, and case law on free-software licenses is (as of early 2003)
nonexistent; no one has ever been sued uhder.

This means a lawyer is unlikely to have a significantly better insight than a careful lay reader. But
lawyers are professionally paranoid about anything they don’t understand. So if you ask one, he is
rather likely going to tell you that you shouldn’t go anywhere near open-source software, despite the
fact that he probably doesn’t understand the technical aspects or the author’s intentions anywhere near
as well as youlo.

Finally, the people who put their work under open-solicemsesare generally not mega-corporations
attended by schools of lawyers looking for blood in the water; they’re individuals or volunteer groups
who mainly want to give their software away. The few exceptions (that is, large companies both
issuing under open-source licenses and with money to hire lawyers) have a stake in open source and
don’t want to antagonize the developer community that produces it by stirring up legal trouble.
Therefore, your odds of getting hauled into court on an innocent technical violation are probably lower
than your chances of being struck by lightning in the nedk.



This isn’t to say you should treat these licenses as jokes. That would be disrespectful of the creativity
and sweat that went into the software, and you wouldn’t enjoy being the first litigation target of an
enraged author no matter how the lawsuit came out. But in the absence of definitive case law, a visible
good-faith effort to meet the author’s intentions is 99% of what you can do; the additional 1% of
protection you might (or might not) get by consulting a lawyer is unlikely to mdkéseence.



Open-sourcesoftware in the rest of thisbook

In the rest of this book, we will often be referring you to open-source development tools. We want to
reinforce here a point we implicitly made earlier — we are going to recommend these tools not
because they are freely available but because they are the best available. Many have outcompeted
proprietary alternatives; in some cases, they are so good that they have left no market niche for
closed-source competitorseater.

There are many reasons Upen-sourcesoftware tends to be of high quality. We’ve touched on
them here, and will discuss the phenomenon in more detail in CAapt@penSource)on the open
development model. For now we’ll observe that all the forces that tend to make open source better
have the most impact on development tools — programs that are in daily use by a large and able
population ofprogrammers.

As a general rule, you will find that any kind of development tool, library, or application that is in
constant use by open-source developers is done better in open source than in any of its proprietary
alternatives. In particular, you can use the tools we recommend in this book with confidence; they
have been through ttiee.
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Software Portability and Keeping Up Standards
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It is easier to port Unix to a new machine, than an application to a new opesgstem.
--DennisRitchie

Unix was the first operating system to be ported between differing processor families (6th Edition,
1976-77). Today, Unix is routinely ported to every new machine powerful enough to sport a
memory-management unit. Unix applications are routinely moved between Unixes running on wildly
differing hardware; in fact, it is almost unheard of for a pofailo

Portability has always been one of Unix’s principal advantages. Unix programmers tend to write on
the assumption that hardware is evenascent and only the Unix API is stable, making as few
assumptions as possible about machine specifics such as word length, endianness or memory
architecture. In fact, code that is hardware-dependent in any way that goes beyond the abstract
machine model of is considered very bad form in Unix circles. and only really tolerated in very
special cases like operating systeannels.

Unix developers also tend to fight shy of making software dependent on non-Unix hardware or
software technologies, and to lean heavily on open standards. These habits of writing for portability
are so ingrained in the Unix tradition that they are applied even to small one-off projects with a short
expected lifetime. They have had secondary effects all through the design of the Unix development
toolkit, and on programming languages like Perl and Python and Tcl that were developddnixder

The direct benefit of portability is that it is normal for Unix software to outlive its original hardware
platform, so that tools and applications don’t have to be re-invented every few years. Today, code
originally written for Version 7 Unix (1979) is routinely used not merely on Unixes genetically
descended from V7, but on variants llkiaux in which the operating system APl was written from a
Unix specification and shares no code with the Bell Labs sdugee



The indirect benefits are less obvious but may be more important. The discipline of portability tends to
exert a simplifying influence on architectures, interfaces, and implementations. This both increases the
odds of project success and reduces life-cycle maintecaste

In this chapter, we’ll survey the scope and history of Unix standards. We’'ll discuss which ones are still
relevant today and describe the areas of greater and lesser variance in the Unix APIl. We’ll examine the
tools and practices that Unix developers use to keep code portable, and develop some guides to good
practice.



Evolution of C

The central fact of the Unix programming experience has always been the stability of the C language
and the handful of service interfaces that always travel with it (notably, the standard 1/O library and
friends). The fact that a language originated in 1973 has required as little change as this one has in
thirty years of heavy use is truly remarkable, and without parallels anywhere else in computer science
or engineering.

In Chaptefd (Modularity) we argued that C has been successful because it acts as a layer of thin glue
over computer hardware approximating the “standard architecture” of Blaauw & Brooks. There is, of
course, more tho the story than that. To understand the rest of the story, we’ll need to take a brief look
at the history otC.

Early history of C

C began life in 1971 as a systems-programming language fBDtRel 1port of Unix, based on Ken
Thompson'sarlier B interpreter which had in turn been modeled on BCPL, the Basic Common
Programming language designed at Cambridge Universit966-67.

DennisRitchie’soriginal C compiler (often called the “DMR” compiler after his initials) served the
rapidly growing community around Unix versions 5, 6, and 7. Version 6 C spawned Whitesmiths C, a
reimplementation that became the first commercial C compiler and the nucleus of IDRIS, the first
Unix workalike. But most modern C implementations are patterned on Steve C. Johnson’s “portable C
compiler” (PCC) which debuted in Version 7 and replaced the DMR compiler entirely in both System
V and the BSDt.x releases.

In 1976, Version 6 C introduced the typedef, union, and unsigned int constructs. The approved syntax
for initializations and some compound operators elsanged.

The C language settled into essentially its modern form in 1977, when the Version 6 DMR compiler
was enhanced to support the troff(1) phototypesetter — at that point Unix’s single dg@esttion.

The original description of C was Brian Kernighan & DennisRiichie’soriginalThe C
ProgrammingLanguageaka “the White Book[[K&R] It was published in 1978, the same year the
first commercial C compiler became available.

The White Book described enhanced Version 6 C, with one significant exception involving the
handling of public storage. Ritchie’s original intention had been to model C’s rules on FORTRAN
COMMON declarations, on the theory that any machine that could handle FORTRAN would be ready
for C. But two early C ports (to Honeywell and IBM 360 mainframes) happened to be to machines
with very limited common storage or a primitive linker or both. Thus, the Version 6 C compiler was
moved to the stricter definition-reference model describBd&mR]]

This decision was reversed in Version 7 C after it developed that a great deal of existing source
depended on the looser rules. Pressure for backward-compatibility would would foil yet another
attempt to switch (in 1983’s System V Releasbefore the ANSI Draft Standard finally settled on
definition-reference rules ih988.

V7 C introduced enum and treated struct and union values as a first-class objects that could be
assigned, passed as arguments, and returned from functions (e.g., rather than being passed around by
address).



The Systenill C version of the PCC compiler (which also shipped with BSI2)changed the

handling of struct declarations so that members with the same names in different structs would not
clash. It also introduced void and unsigned char declarations. The scope of extern declarations local to
a function was restricted to the function, and no longer included all code following it.

The ANSI C Draft Proposed standard added const (for read-only storage), volatile (for locations such
as memory-mapped /O registers that might be modified asynchronously from the thread of program
control.) The unsigned was generalized to apply to any type, and a symmetrical signed was added.
Initialization syntax for auto aggregates and union types was added. Most importantly, function
prototypes weradded.

The most important changes in early C were the switch to definition-reference and the introduction of
function prototypes in the Draft Proposed ANSI C standard. The language has been essentially stable
since copies of the X3J11 committee’s working papers on the Draft Proposed Standard signaled the
committee’s intentions to compiler implementord 885-1986.

C standards

C standards development has been a conservative process with great care taken to preserve the spirit of
the original C language, and an emphasis on ratifying experiments in existing compilers rather than
inventing new features. TI@X chartefdocument is an excellent expression of thission.

Work on the first official C standard began in 1983 under the auspices of the X3J11 ANSI committee.
The major functional additions to the language were settled by the end of 1986, at which point it came
common for programmers to distinguish between “K&R C” and “ARSI

While the core of ANSI C was settled early, arguments over the contents of the standard libraries
dragged on for years, The formal standard was not issued until the end of 1989, well after most
compilers had implemented the 1985 recommendations. The standard was originally known as ANSI
X3.159, but was redesignated ISO/IEC 9899:1990 when the ISO took over sponsorship in 1990. The
language variant it describes is generally knowG 2.

The first book on C and Unix portability practi@grtable C and Unix SysterRsogrammindLapin],

was published in 1987; it was in fact written by the author of this book under a corporate pseudonym
forced on him by his employers at the time. The Second Edit{fi€d¥] came out in 1988 (see the
References iChapter.

A very minor revision of C90, known as Amendment 1, AM1, or C93, was floated in 1993. It added
support for wide characters and Unicode. This became IS@88G-1:1994.

Revision of the C90 standard began in 1993. In 1999, ISO/IEC 9899 (generally known as C99) was
adopted by ISO, the International Standards Organization. It incorporated Amendment 1, and added a
few minor features. Perhaps the most significant one for most programmers is the C++-like ability to
declare variables at any point in a block, rather than just at the beginning. Variadic macros were also
added.

The C9X working group hasvaebpagé but no third standards effort is planned as of e2008.

Standardization of C has been greatly aided by the fact that there were working and largely compatible
implementations on a wide variety of systems before standards work was begun. This made it harder
to argue about what features should be irsthadard.


http://anubis.dkuug.dk/JTC1/SC22/WG14/www/charter
http://anubis.dkuug.dk/JTC1/SC22/WG14/www/projects

Unix standards

The 1973 rewrite of Unix i€ made it unprecedentedly easy to port and modify. As a result, the
ancestral Unix diverged into a family of operating systems early on. Unix standards originally
developed to reconcile the APIs of the different branches of the faegly.

The Unix standards that evolved after 1985 were quite successful at this — so much so that they serve
as valuable documentation of the APl of modern Unix implementations. In fact, real-world Unixes
follow published standards so closely that developers can (and frequently do) lean more on documents
like the POSIX specification than on the official manual pages for the Unix variant they happen to be
using.

In fact, on the the newer open-source Unixes (sudlinas) it is common for operating-system
features to have been engineered using published standards as the specification. We'll return to this
point when we examine the RFC standards process later ochepser.

Standards and the Unixwars

The original motivation for the development of Unix standards was the split betwefh&fheand
Berkeleylines of development that we examined in chdpigfistory)

The 4.x BSD Unixes that add@&€P/IPsupport to Unix were descended from the 1979 Version 7.
After the release of 4.1BSD in 1980 tBED line quickly developed a reputation as the cutting edge of
Unix. Important additions included thévisual editor, job control facilities for managing multiple
foreground and background tasks from a single console, and improvements in sigf@ls (see
[((Multiprogramming).

But another version, 1981’s Systéiln became the basis of AT&T’s later development. System Ili
reworked the Version 7 terminals interface into a cleaner and more elegant form that was completely
incompatible with the Berkeley enhancements. It retained the older (non-resetting) semantics of
signals (see Chaptér{Multiprogramming)for discussion of this point). The January 1983 release of
System V Releaskincorporated somBSD utilities (such ai(1)).

The first attempt to bridge the gap came in February 1983 from UniForum, an influential Unix user
group. Their Uniform 1983 Draft Standard described a “core Unix System” consisting of a subset of
the Systenill kernel and libraries plus a file-locking primitiv&T&Tdeclaredsupport for UDS 83,

but the standard was an inadequate subset of evolving practice bas&B9D.The problem was
exacerbated by the July 1983 release of 4.2BSD, which added many new features (if€&diRg
networking) and introduced some subtle incompatibilities with the ancestral Vérsion

The 1984 divestiture of the Bell operating companies and the beginnings of thedds({gee chapter
significantly complicated matters. Shticrosystemswateading the workstation industry

in a BSD direction; AT&T was trying to get into the computer business and use control of Unix as a
strategic weapon even as it continued to license the operating system to competitors like Sun. All the
vendors were making business decisions to differentiate their versions of Unix for competititive
advantage.

During the Unixwars,technical standardization became something that cooperating technical people
pushed for and most product managers accepted grudgingly or actively resisted. The one large and
important exception waST&T&T, which declared its intention to cooperate with user groups in
setting standards when it announced System V Rebiasganuary 1984. The second revision of the



UniForum Draft Standard, in 1984, both tracked and influenced the API of SVr2. Later Unix standards
also tended to track System V except in areas wBSEfacilities were very clearly functionally

superior (thus, for example, modern Unix standards describe the Sydtgminal controls rather

than the BSD interface to the safaeilities).

In 1985AT&T released th&ystem V Interfad@efinition (SVID). SVID provided a more formal
description of the SVr2 API, incorporating UDS 84, later revisions SVID2 and SVID3 tracked the
interfaces of System V releases 3 and 4. SVID became the basis for the POSIX standards, and
ultimately tipped most of the Berkeley/AT&T disputes over systemGalilarary calls in AT&T’s

favor.

But this would not become obvious for a few years yet, and thewhrswere being fought on other

levels as well. For example, 1985 saw the release of two competing API standards for file-system
sharing over network§un’sNetwork File System (NFS) adir&T’'s Remote File System (RFS).

Sun’s NFS prevailed because Sun was willing to share not merely specifications but open-source code
with others. The lesson of this success was ignored, however, even when it was repeated in 1987 by
the open-source X windosystem’svictory over Sun’s proprietary Networked Window System

(NEWS).

After 1985 the main thrust of Unix standardization passed to the Insitute of Electrical and Electronic
Engineers (IEEE). Their 1003 committee developed a series of standards generally kR@&as
These went beyond describing merely systems call€ditdary facilities; they specified detailed
semantics of a shell and a minimum command set, and also detailed bindings for various non-C
programming languages. The first release in 1990 was followed by a second edition in 1996. The
International Standards Organization adopted them as ISGAEE.

Key POSIX standardsaclude:
1003.1 (releaseti990)

Library procedures. Described the C systenm call API, much like Version 7 except for signals
and the terminal-contrahterface.

1003.2 (releasetio9?2)

Standard shell and utilities. Shell semantics strongly resembles those of the System V Bourne
shell.

1003.4 (releaseti993)

Real-time Unix. Binary semaphores, process memory locking, memory-mapped files, shared
memory, priority scheduling, real-time signals, clocks and timers, IPC message passing,
synchronized 1/O, asynchronous 1/O, real-tifihes.

In the 1996 Second Edition, 1003.4 was split into 1003.1b (real-time) and 1(D3ehals).

Despite being underspecified in a couple of key areas such as signal-handling semantics and omitting
BSD sockets, the original POSIX standards became the basis of all later Unix standardization work.
They are still cited as an authority, albeit indirectly through referenceB@IS&X Programmer’s
Guide[Lewine} thedefacto Unix API standard is still “POSIX plus sockets”, with later standards

mainly adding features and specifying conformance in unusual edge casetaselse



The next player on the scene was X/Open (later reamed the Open Group), a consortium of Unix
vendors formed in 1984. Their X/Open Portability Guides initially developed in parallel with the

POSIX drafts, then after 1990 incorporated and extended them. Unlike POSIX, which attempted to
capture a safe subset of all Unixes, the X/Open Portability Guides (XPGs) were oriented more towards
common practice at the leading edge; even XPG1 in 1985, spanning SVr2 and 4rizBfled

sockets.

XPG2 in 1987 added a terminal-handling API that was essentially System V curses(3). XPG3 in 1990
merged in the X11 APIl. XPG4 in 1992 mandated full compilance with the 1989 ANSI C staAdlard
three of these standards were heavily concerned with support of internationalization and described an
elaborate API for handling codesets and messag#ogs.

In reading about Unix standards you might come across references to “Spec 1170” (from 1993), “Unix
95” (from 1995) and “Unix 98” (from 1998). These were certification marks based on the X/Open
standards; they are now of historical interest only. But the work done on XPG4 turned into Spec 1170,
which turned iunto the first version of the Single Unix Specificat®liS).

In 1993 seventy-five systems and software vendors including every major Unix company put a final
end to the Unixvarswhen they declared backing for X/Open to develop a common definition of Unix.
As part of the arrangement, X/Open acquired the rights to the Unix trademark. The merged standard
became Single Unix Standard version 1. It was followed in 1997 by a verson 2. In 1999 X/Open
absorbed the POSIXctivity.

In 2001 X/Open (now The Open Group) issuedShwle Unix Standard versid@p All the threads of

Unix API standardization were finally gathered into one bundle. This reflected facts on the ground; the
different varieties of Unix had re-converged on a common API. And, at least among old-timers who
remembered the turbulence of the 1980s, there was rajoiting.

The ghost at the victorybanquet

There was, unfortunately, an awkward detail — the old-school Unix vendors who had backed the

effort were under severe pressure from the new school of open-source Unixes, and were in some cases
in the process of abandoning (in favolLafux) the proprietary Unixes for which they had gone to so

much effort to secureonformance.

The conformance testing needed to verify Single Unix Specification conformance is an expensive
proposition. It would need to be done on a per-distribution basis, but is well out of the reach of most
distributors of open-source operating systems. In any case, Linux changes so fast that any given
release of a distribution would probably be obsolete by the time it coube igiéied.

Standards like the Single Unix Specification have not lost their relevance. They're still valuable guides
for Unix implementors. But how the Open Group and other institutions of the old-school Unix
standardization process will adapt to the rapid tempo of open-source releases (and to the low- or
zero-budget operation of open-source development groups!) remainsderbe

Unix standards in the open-sourcevorld

In the mid-1990s, the open-source community began standardization efforts of their own. These efforts
built on the source-code-level compatibility securedP@SIXand its descendantsnux, in

particular, had been written from scratch in a way that depended on the availability of Unix API
standards lik€OSIX.


http://www.unix.org/version3/

In 1998 Oracle ported its market-leading database product to Linux, in a move that was rightly seen as
a major breakthrough in Linux’s mainstream acceptance. The engineer in charge of the port provided a
definitive demonstration that API standards had done their job when he was asked by a reporter what
technical challenges Oracle had had to surmount. The engineer’s reply was “Wengke'd

The problem for the new-school Unixes, therefore, was not API compatibility at the source-code level.
Everybody took for granted the ability to move source code between difteénemt BSD, and
proprietary-Unix distributions without more than a trivial amount of porting labor. The new problem
was not source but binary compatibility. For the ground under Unix had shifted in a subtle way as a
consequence of the triumph of commodity R€dware.

In the old days, each Unix had run on what was effectively its own hardware platform. There was
enough variety in processor instruction sets and machine architectures that applications had to be
ported at source level to move at all. On the other hand, there were relatively few major Unix releases
with relatively long service liftimes. Application vendors like Oracle could afford the cost of building

and shipping separate binary distributions for each of three or four hardware/software combinations,
because they could amortize the low cost of source-code porting over large customer populations and a
long enough product lifeycle.

But then the minicomputer and workstation vendors got swamped by inexpensive 386-based
supermicros, and open-source Unixes changed the rules, Vendors found they no longer had a stable
platform to ship their binarigs.

The superficial problem, at first, was the large number of Unix distributors — but kisitixe

distribution market consolidated, it became clear that the real issue was the rate of change over time.
APIs were stable, but the expected locations of system administrative files, utility programs, and
things like the prefix of the paths to user mailbox names and system log filehkaeping.

The first standards effort to develop within the new-schouixandBSD community itself

(beginning in 1993) was the File Hierarchy Standard (FHS). This was incorporated into the Linux
Standards Base (LSB), which also standardized an expected set of service libraries and helper
applications. Both standards became activities dFtee StandardSroug which by 2001 developed
a role similar to X/Open’s position amidst the old-school Weirdors.



http://www.freestandards.org/

IETF and the RFC standardsprocess

When the Unix community merged with the culture of Internet engineers, it also inherited a mind-set
formed by the RFC standards process of the Internet Engineering Task Force. In IETF tradition,
standards have to arise from experience with a working prototype implementation — but once they
becomestandards, code that does not conform to them is considered broken and mescilapplgd.

This is not, sadly, the way standards are normally developed. The history of computing is full of
instances in which technical standards were derived by a process that combined the worst features of
philosophical axe-grinding with murky back-room politics — producing specifications that failed to
resemble anything ever implemented. Worse, many were either so demanding that they they could not
be practically implemented or so underspecified that they caused more confusion than they resolved.
Then they were promulgated to vendors who ignored them wherever thegongenient.

One of the more notorious examples of standards nonsense was the OSI networking model that briefly
contended witiTCP/IPin the 1980s — its 7-layer model looked elegant from a distance but proved
overcomplicated and unimplementable in practice. The ANSI X3.64 standard for video-display
terminal capabilities is bedeviled by subtle incompatibilities between legally conformant
implementations continue to cause problems (in particular, this is why the function and special keys in
your xterm(1) will occasionally break). The RS232 standard for serial communications was so
underspecified that it sometimes seemed that no two serial cables were alike. Standards horror stories
of similar kind could fill a book the size of thige.

The IETF's demand for a working implementation first has saved it from the worst category of
blunders. In fact its criterion &ronger:

[A] candidate specification must be implemented and tested for correct operation
and interoperability by multiple independent parties and utilized in increasingly
demanding environments, before it can be adopted as an Ir¢andard.

--The Internet Standards Process -- RevigffRFC2026)

All IETF standards pass through a stage as RFCs (Requests for Comment). The submission process for
RFCs is deliberately informal. RFCs may propose standards, survey results, suggest philosophical
bases for subsequent RFCs, or even make jokes. The appearance of the annual April 1st RFC is the
closest equivalent of a high holy day observance among Inteaokérsand has produced such gems

asA Standard for the Transmission of IP Datagrams on A@aniers[(RFC1149)andThe Hyper

Text Coffee Pot Contrétrotocol[[REC2324)

But joke RFCs are about the only sort of submission that instantly becomes an RFC. Serious proposals
actually start as “Internet-Drafts” floated for public comment via IETF directories on several

well-known hosts. Individual Internet drafts have no formal status and may be changed or dropped by
their originators at any time. If they are neither removed nor promoted to RFC status, they are

removed after sixonths.

Internet-Drafts are not specifications, and software implementors and vendors are specifically barred
from claiming compliance with them as if they were specifications. Internet-Drafts are focal points for
discussion, usually in a working group connected via an electronic mailing list. When the working
group leadership deems fit, the Internet-Draft is submitted to the RFC editor for assignment of an RFC
number.
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Once an Internet-Draft has been published with an RFC number, it is a specification to which
implementors may claim conformance. It is expected that the authors of the RFC and the community
at large will begin correcting field experience with fpecification.

Some RFCs go no further. A specification that fails to attract use and survive field testing can be

quietly forgotten, and eventually marked “Not recommended>" or “Superseded” by the RFC editor.

Failed proposals are accepted as one of the overheads of the process, and there is no stigma attached to
being associated witbne.

The steering committee of the IETF (IESG, or Internet Engineering Steering Group) is responsible for
putting successful RFCs on the standards track. They do this by designating the RFC a ‘Proposed
Standard’. For the RFC to qualify, the specification must be stable, peer-reviewed, and have attracted
significant interest from the Internet community. Implementation experience is not absolutely required
before an RFC is given Proposed Standard designation, but it is considered highly desirable, and the
IESG may require it if the RFC touches the the Internet core protocols or might be otherwise
destabilizing.

Proposed Standards are still subject to revision, and may even be withdrawn if the IESG and IETF
identifies a better solution. They are not recommended for use in “disruption-sensitive environments”
— don'’t put them in your air-traffic-control systems or on intensive-egugpment.

When there are at least two two working, complete, independently originated and interoperable
implementations of a Proposed Standard, the IESG may elevate it to Draft Standard status. RFC 2026
says: “Elevation to Draft Standard is a major advance in status, indicating a strong belief that the
specification is mature and will heseful.”

Once an RFC has reached Draft Standard status, it will be changed only to address bugs in the logic of
the specification. Draft Standards are expected to be ready for deployment in disruption-senstive
environments.

When a Draft Standard has passed the test of widespread implementation and reached general
acceptance, it may be blessed as an Internet Standard. Internet Standard keep their RFC numbers, but
also get a number in the STD series. At time of writing there are over 3000 RFCs but SifiR$0

RFCs not on standards track may be labeled Experimental, Informational (the joke RFCs get this
label), or Historic. The Historic label gets applied to obsolete standards RFC 2026 notes: “(Purists
have suggested that the word should be ‘Historical’; however, at this point the use of ‘Historic’ is
historical.)”

The IETF standards process is designed to encourage standardization driven by practice rather than
theory, and to ensure that standard protocols have undergine rigorous peer review and testing. The
success of this model is evident in its results — the worldimigenet.



Specificationsas DNA, code aRkRNA

Even in the paleolithic period of the PDP-7, Unix programmers had always been more prone than their
counterparts elsewhere to treat old code as disposable. This was doubtless a product of the Unix
tradition’s emphasis on modularity, which makes it easier to discard and replace small pieces of
systems without losing everything. Unix programmers have learned by experience that trying to
salvage bad code or a bad design is often more work than rebooting the project. Where in other
programming cultures the instinct would be to patch the monster monolith because you have so much
work invested in it, the Unix instinct is usually to scrap estzlild.

ThelETF tradition reinforced this by teaching us to think of code as secondary to standards, Standards
are what enable programs to cooperate; they knit our technologies into wholes that are more than the
sum of the parts. The IETF showed us that careful standardization, aimed at capturing the best of
existing practice, is a powerful form of humility that achieves more than grandiose attempt to remake
the world around a never-implemeniddal.

After 1980 that lesson sank home. Thus, while the ANSI/ISO C standard from 1989 is not completely
without flaws, it is exceptionally clean and practical for a standard of its size and importance. The
Single Unix Specification contains fossils from three decades of experimentation and false starts in a
more complicated domain, and is therefore messier than ANSI C. But the component standards it was
composed from are pretty good; as we pointed out previously, Linus Torvalds successfully built a
Unix from scratch by reading them. THETF'squietbut powerful example created one of the critical
pieces of context that made Linus Torvalds’s festsible.

Respect for published standards andIBY¥F process has become deeply ingrained in the Unix

culture; deliberately violating Internet STDs is simply Not Done. This can sometimes create chasms of
mutual incomprehension between people with a Unix background and others prone to assume that the
most popular or widely-deployed implementation of a protocipisis-factocorrect — even if it

breaks the standard so severely that it will not interoperate with properly confaufiwgre.

The Unix programmer’s respect for published standards is more interesting because he is likely to be
rather hostile t@-priori specifications of other kinds. By the time the ‘watenfiatidel’(specify

exhaustively first, then implement, then debug, with no reverse motion at any stage) fell out of favor in
the software-engineering literature, it had been an object of derision among Unix programmers for
years. Experience, and a strong tradition of collaborative development, had already taught them that
prototyping and repeated cycles of test and re-specification are awsstter

The Unix tradition clearly recognizes that there can be great value in good specifications, but it
demands that they be treated as provisional and subject to revision through field experience in the way
that Internet Draft and Proposed Standards are. In best Unix practice, the documentation of the
program is used as a specification subject to revision analogously to an Internet P&taondart.



Unlike other environments, in Unix development the documentation is often

written before the program, or at least in conjunction with it. For X11, the core X
standards were finished before the first release of X and have remained essentially
unchanged since that date. Compatibility among different X systems is improved
further by rigorous specification-driveesting.

The existance of a well written specification made the development of the X test
suite much easier. Each statement in the X specification was translated into code
to test the implementation, a few minor inconsistancies were uncovered in the
specification during this process, but the result is a test suite that covers a
significant fraction of the code paths within the sample X library and server, and
all without referring to the source code of thmplementation.

--Keith Packard

Semi-automation of the test-suite generation proved to be a serious advantage. While field experience
and advances in the state of the graphics art led many to criticize X on design grounds, and various
portins of it (such as the security and user-resource models) came to seem clumsy and overengineered,
the X implementation achieved a remarkable level of stability and cross-vatetoperation.

In chapte[@ (Generatiorjwe discussed the value of pushing coding up to the highest possible level in
order to minimize the effects of constant defect density. Implicit in Keith Packard’s account is the idea

that the X documentation constituted no mere wish-list but a form of high-level code. Another key X
developer confirmghis:

In X, the specification has always ruled. Sometimes specs have bugs that need to
be fixed too, but code is usually buggier than specs (for any spec worth its ink,
anyway).

--Jim Gettys

Jim goes on to observe that X's process is actually quite similar l&Tiés, Nor is its utility limited

to constructing good test suites; it means that arguments about the system’s behavior can be conducted
at a functional level with respect to the specifiucation, avoiding too much entanglement in
implementatiorissues.



Having a well-considered specification driving development allows for little
argument about bug-vs-feature; a system which incorrectly implements the
specification is broken and shouldfbesd.

| suspect this is so ingrained into most of us that we lose sightpmivitsr.

A friend of mine who worked for a small software firm east of Bellevue wondered
how Linux applications developers could get OS changes synchronized with
application releases. In that company, major system-level APIs change frequently
to accommodate application whims and so essential OS functionality must often
be released along with eaapplication.

| described the power held by the specifications and how the implementation was
subservient to them, and then went on to assert that an application which got an
unexpected result from a documented interface was either broken or had
discovered a bug. He found this concgfpttling.

Discerning such bugs is a simple matter of verifying the implementation of the
interface against the specification. Of course, having source for the
implementation makes that a basier...

--Keith Packard

This standards-come-first attitude has benefits for end users as well. While that small company in
Bellevue has trouble keeping its office suite compatible with their own previous releases, GUI
applications written for X10 in 1988 still run without change on today’s X implementations. In the
Unix world, this sort of longevity is normal — and the standards-as-DNA attitude is the véason

Experience shows that the standards-respecting scrap-and-rebuild culture of Unix tends to yield better
interoperability over extended time than perpetual patching of a code base without a standard or to
provide guidance and continuity. This may, indeed, be one of the most importam:dsoixs.

Keith's last comment brings up directly to an issue that the success of open-source Unixes has brought
to the forefront — the relationship between open standards and open source. We'll address this at the
end of the chapter — but before doing that, it's time to address the practical question of how Unix
programmers can actuallisethe tremendous body of accumulated standards and lore to achieve
softwareportability.



Programming for Portability

Software portability is usually thought of in quasi-spatial terms; can this code be moved sideways to
existing hardware and software platforms other than the one it was built for? But Unix experience over
decades tells us that durability down through time is just as important, if not more so. If we could
predict the future of software in detail it would probably be the present — nevertheless, in
programming for portability we should try to think about making choices that will base the software

on the features of its environment that are likeliest to persist, and avoid technologies that seem likely
to be end-of-lifed in the foreseealblgure.

Under Unix, two decades of attention to the issues of specifying portable APIs has largely solved that
problem. Facilties described in the Single Unix Specification are likely to be present on all modern
Unix platforms today and rather unlikely to go unsupported iriutuee.

But not all platform dependencies have to do with the system or library APIs. Your implementation
language can matter; filesystem layout and configuration differences between the source and target
system can be a problem as well. But Unix practice has evolved weggdo

Portability and choice oflanguage

The first issue in programming for portability is your choice of implementation language. All of the
major languages we surveyed in ChafigfLanguagesare highly portable in the sense that

compatible implementations are available across all modern Unixes; for most, implementations under
Windows and MacOS are available as well. Portability problems tend to arise not in the core
languages but in support libraries and degree of integration with the local environment (especially GUI
programming).

C portability

The core C language is extremely portable. The standard Unix implementation is the GNU C compiler,
which is ubiquitous not only in open-source but modern proprietary Unixes as well. GNU C has been
ported to Windows and classic MacOS, but is not widely used in either environment because it lacks
portable bindings to the nativgUl.

The standard I/O library, mathematics routines, and internationalization support are portable across all
C implementations. File I/O, signals, and process control are portable across Unixes provided one
takes care to use only the modern APIs described in the Single Unix Specification; older C code often
has thickets of preprocessor conditionals for portability, but those handle legacy pre-POSIX interfaces
from older proprietary Unixes that are obsolete or close t@2003.

C portability starts to be a more serious problem near IPC, threads, and GUI interfaces. We discussed
IPC and threads portability issues in Chaptéviultiprogramming)the real practical problem is GUI
toolkits. There are a number of open-source GUI toolkits that are universally portable across modern
Unixes and to Windows and classic MacOS as well — Tkinter, wxWindows, GTK and Qt are four
well-known ones with source code and documentations readily discoverable via Web search. But none
of them is shipped with all platforms, and (for reasons more legal than technical) none of these offers
the native-GUI look and feel on glatforms.

Volumes have been written on the subject of how to write portable C code. This book is not going to
be one of them. Instead, we recommend a careful readRgaasfmmended C Style and Coding
Standard§{Cannon etal.] and the chapter on portability Tihe Practice oProgramming



[[Kernighan&Pike99]

C++ portability

C++ has the same operating-system-level portability issues as C. An additional one is that the
open-source GNU compiler for C++ lagged substantially behind the proprietary implementations for
most of its existence; thus, there is not yet as of early 2003 a universally deployed equivalent of GNU
C on which to base a de-facto standard. Furthermore, no C++ compiler yet implements the full C++99
ISO standard for the language, though GNU C++ carfusest.

Shell portability

Shell-script portability is, unfortunately, poor. The problem is not shell itself; bash(1) (the open-source
Bourne Again shell) has become sufficiently ubiquitous that pure shell scripts can run almost
anywhere. The problem is that most shellscripts make heavy use of other commands and filters which
are much less portable, and by no means guaranteed to be in the toolkit in any givemaiznie.

This problem can be overcome by dint of heroic effort, as in the autoconf(1) tools. But it is sufficiently
severe that most of the heavier sort of programming that used to be done in shell has moved to
second-generation scriptitanguagesike Perl, Python, andicl.

Perl portability

Perl has good portability. Stock Perl even offers a portable set of bindings to the Tkinter toolkit that
supports portable GUIs across Unix, MacOS and Windows. Two issues dog it, however. The first, less
serious, is that as of early 2003 many proprietary Unixes still install by default only the rather archaic
Perl 4 dialect (this will pass with time). The second, more serious, is that Perl scripts often require
add-on libraries from CPAN (the Comprehensive Perl Archive Network) which are not guaranteed to
be present with every Panhplementation.

Python portability

Python has excellent portability. Like Perl, stock Python even offers a portable set of bindings to the
Tkinter toolkit that supports portable GUIs across Unix, MacOS and Windows. Also like Perl, Python
still has in early 2003 a version-skew problem: Python'’s is between the leading-edge 2.x versions and
the 1.5.2 still carried on slower-moving proprietary Unixes. However, the Python version of the
problem is much less severe, as the gap between 1.5.2 and 2.x is far narrower than the Perl-4/Perl-5
chasm.

More importantly for the long term, stock Python has a much richer standard libraBetthand no
equivalent of CPAN for programmers to rely on; instead, important extension modules are routinely
incorporated into the stock Python distribution during minor releases. This trades a spatial problem for
a temporal one, making Python much less subject to the missing-module effect at the cost of making
Python minor version numbers somewhat more important than Perl release levels are. In practice, the
tradeoff seems to favétython.

Tcl portability

Tcl portability is good, overall, but varies sharply by project complexity. The Tkinter toolkit for
cross--platform GUI programming is native to Tcl. As with Python, evolution of the core language has
been relatively smooth, with few version-skew problems. Unfortunately, Tcl relies on extension
facilities that are not guaranteed to ship with every implementation even more heavily than Perl does



— and there is no equivalent of CPAN to centrally distrilbiésn.

For smaller projects not reliant on extensions, therefore, Tcl portability is excellent. But larger projects
tend to depend heavily on both extensions and (as with shell programming) calling external commands
which may or may not be present on the target machine; their portability tendsdorbe

Javaportability

Java portability is excellent — it was, after all, designed with “write once, run everywhere” as a
primary goal. Portability fails, however to be perfect. The difficulties are mostly version-skew
problems between JDK 1.1 and the older AWT GUI toolkit (on the one hand) and JDK 1.2 with the
newer Swing GUI toolkit. There are several important reasornbkdse:

® Sun’'s AWT design was so deficient that it had to be replacedSmithg.

® Microsoft'srefusalto support Java development on Windows and attempt to replace it with C#,
attempting to foil “write once, run everywhere” in order to protect the operating-system
monopoly.

® Microsoft’'s decision to hold Internet Explorer’s applet support at the JDkexiel

® Sunlicensingerms that make open-source implementations of JDK 1.2 impossible, retarding its
deployment (especially in the Linuxorld).

For programs that involve GUIs, Java developers seeking portability will, for the forseeable future,
face a choice: Stay in JDK 1.1/AWT with a poorly-designed toolkit for maximum portability
(including to MicrosoftWindows),or get the better toolkit and capabilities of JDK 1.2 at the cost of
sacrificing someportability.

EmacsLisp portability

Emacs Lisp portability is excellent. Emacs installations tend to be upgraded frequently, so seriously
down-version implementations are rare. The same extehisiptis supported everywhere and

effectively all extensions are shipped with Emacs itself. Portability problems are usually
manifestations of quirks in the C-level bindings of operating-system facilities; control of subordinate
processes in modes like mail agents is about the only issue where such problems manifest with any
frequency.

Avoiding systemdependencies

Once your language and support libraries are chosen, the next portability is usually the location of key
system files and directories — mail spools, logfile directories and the like. The archetype of this sort
of problem is whether the mail spool directoryviar/spool/mail or /var/mail

Often, this sort of dependency can be avoided by stepping back and reframing the problem. Why are
you opening a file in the mail spool directory, anyway? If you're writing to it, wouldn’t it be better to
simply invoke the local mail transport agent to do it for you so the file-locking gets done right? If
you're reading from it, might it be better to query it through a POP3 or Is&k#er?

The same sort of question applies elsewhere. If you find yourself opening logfiles manually, shouldn’t
you be using syslog(3) instead? Function-call interfaces through the C library are better standardized
than system file locations. Use tliatt!



If you must have system file locations in your code, your best alternative depends on whether you will
be distributing in source code or binary form. If you are distributing in source, the autoconf tools tools
we discuss in the next section will help you. If you're distributing in binary, then it's good practice to
have your program poke around at runtime and see if it can automatically adapt itself to local
conditions — say, by actually checking for the existendgafmail and/var/spool/mail

Tools for portability

You can often use the open-source GNU autoconf(1) we surveyed in Ci&8giievblsfools to
handle portability issues, do system-configuration probes, and tailor your makefiles. People building
from sources today expect to be able to typafigure; make; makeinstall and get a clean build.

can help automate away the problem of conditionalizing your code for diffdegfurms.

There are other tools that address this problem; two of the better known are the imake(1) tool
associated with X windows and the Configure built by Larry Wall (later the invenRerbfand

adapted for many different projects. All are at least as complicated as the autoconf suite, and no longer
as often used. They don’t cover as wide a range of taygetms.


http://seul.org/docs/autotut/

Portability, open standards and opeisource

Portability requires standards. Open-source reference implementations are the most effective method
known for both promulgating a standard and for pressuring proprietary vendors into conforming. If
you are a developer, open-source implementations of a published standard can both tremendously
reducing your coding workload and allow your product to benefit (in ways both expected and
unexpected) from the labor others.

Let’'s suppose, for example, you are designing image-capture software for a digital camera. Why write
your own format for saving image bits or buy proprietary code when (as we noted in @japter
Textuality) there is a well-tested, full-featured library for writing PNGs in og@urce?

The (re)invention of open source has had a significant impact on the standards process as well. Though
it is not formally a requirement, tHETFhassince around 1997 grown increasingly resistent to
standard-tracking RFCs that do not have at least one open-source reference implementation. In the
future, it seems likely that conformance to any given standard will increasingly be measured by
conformance to (or outright use of!) open-source implementations that have been blessed by the
standard’sauthors.

In the end, the most effective step you can take to ensure the portability of your code is to not rely on
proprietary technology. You never know when the closed-source library or tool or code generator or
network protocol you are depending on will be end-of-lifed, or when it will be changed in some
backwards-incompatible way that breaks your project. With open-source code, you have a path
forward even if the leading-edge version changes in a way that breaks your project; because you have
access to source code, you can forward-port it to new platforms if youmeed

Until the late 1990s this advice would have been been impractical. The few alternatives to relying on
proprietary operating systems and development tools were noble experiments, academic
proofs-of-concept, or toys. But the Internet changed everything; in earlyL20038and the other
open-source Unixes exist and have proven their mettle as platforms for delivering production-quality
software. Developers have a better option now than being dependent on short-term business decisions
designed to protect someone else’s monopoly. Practice defensive design — build on open source and
don’t getstranded!



Chapter 16. Documentation

Explaining Your Code To A Web-Centric World
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I've never met a human being who would want to read 17,000 pages of documentation, and if there
was, I'd kill him to get him out of the gepeol.

--Joseph Costello, President@adence

Unix’s first application, in 1971, was as a platform for document preparation — Bell Labs used it to
prepare patent documents for filing. Computer-driven phototypesetting was still a novel idea then, and
Joe Ossana’s troff(1) formatter defined the state oathe

Ever since, sophisticated document formatters, typesetting software, and page-layout programs of
various sorts have been an important theme in the Unix tradition. While troff(1) has proven
surprisingly durable, Unix has also hosted a lot of groundbreaking work in this application area.
Today, Unix developers and Unix tools are at the cutting edge of far-reaching changes in
documentation practice triggered by the advent of the World Wiele.

In this chapter, we’ll survey the rather unfortunate surfeit of different documentation formats left
behind by decades of experimentation, and we’ll develop guidelines for good practice asty/igood



Documentationconcepts

Our first distinction is between “What You See Is What You Get” (WYSIWYG) documentation
programs andharkup-centeretbols Most desktop-publishing programs and word processors are in

the former category; they have visual GUIs in which what one types is inserted directly into an
on-screen presentation of the document intended to resemble the final printed version as closely as
possible. This visual-interface style was too expensive for early computer hardware, and remained rare
until the advent of the Macintosh personal computéi9ig4.

In a markup-centered system, by contrast, the master document is normally flat text containing
explicit, visible control tags and not at all resembling the intended output. The marked-up source can
be modified with an ordinary text editor, but has to be fed to a formatter program to produce rendered
output for printing or display. The Unix troff(1) of 1971 was a markup formatter, and is probably the
oldest such program still unse.

WYSIWYG document processors have the general problem with GUI interfaces that we discussed in
Chaptefll (Usernterfaced)the fact that yowanvisually manipulate anything tends to mean you
mustvisually manipulate everything. They can be very nice if what you want is to slide a picture three
ems to the right on the cover of a four-page brochure, but they tend to be very constricting any time
you need to make a global change to the layout of a 300-page manuscript. WYSIWYG users faced
with that kind of challenge must give it up or suffer the death of a thousand mouse clicks; in situations
like that, there is really no substitute for being able to edit exptiarkup.

Today, in a world influenced by the example of the Web and XML, it has become common to make a
distinction betweepresentatiorandstructuralmarkup in documents — the former being instructions
about how a document should look, the latter being instructions about how it's organized and what it
means. This distinction wasn't clearly understood or followed through in early Unix tools, but it's very
important for understanding the design pressures that let to tatiscendants.

Presentation-level markup carries all the formatting information (e.g. about desired whitespace layout
and font changes) in the document itself. In a structural-markup system, the document has to be
combined with atylesheethat tells the formatter how to translate the structure markup in the
document to a physicédyout.

Most markup-centered documentation systems support a macro facility. Macros are user-defined
commands that are expanded by text substitution into sequences of built-in markup requests. Usually
these macros add structural features (like the ability to declare section headings) to the markup
language.

Finally, we note that there are significant differences between the sorts of things composers want to do
with small documents (business and personal letters, brochures, newsletters) and the things they want
to do with large ones (books, long articles, technical papermandals).



The Unix style

The Unix style of documentation (and documentation tools) has several technical and cultural traits
that set it apart from the way documentation is done elsewhere. Understanding these signature traits
first will help create context for you to understand why the programs and the practice look the way
they do, and why the documentation reads the wayes.

Technical background

Technically, Unix documentation tools have always been designed primarily for the challenges
involved in composing large documents. Consequently, most Unix developers learned to love
markup-centered documentation tools. Unlike the PC users of the time, the Unix culture was
unimpressed with WYSIWYG word processors when they became generally available in the late
1980s and early 1990s — and even among today’s younger Unix hackers it is still unusual to find
anyone who really prefetaem.

Dislike of opaque binary document formats — and especially of ogagpéetary binary formats —

also played a part in the rejection of WYSIWYG tools. On the other hand, Unix programmers seized
on Postscript (the now-standard language for controlling imaging printers) with enthusiasm as soon as
the language documentation became available; it fit neatly in the Unix tradition of domain-specific
languages. Modern open-source Unix systems have excellent Postscimatadls.

Another consequence of the large-document bias is that Unix documentation tools have tended to have
relatively weak support for including images, but strong support for diagrams, tablgsaphithg.

The Unix attachment to markup-centered systems has often been caricatured as a prejudice or a
troglodyte trait, but it is not really anything of the kind. Just as the putatively ‘primitive’ CLI style of
Unix is in many ways better adapted to the needs of power users than GUIs, the markup-centered
design of toals like troff(1) is a better fit for the needs of power documenters than are WYSIWYG
programs.

The large-document bias in Unix tradition did not just keep Unix developers attached to markup-based
formatters like troff(1), it also made them interested in structural markup. The history of Unix
document tools is one of lurching, muddled and erratic movement in a general direction away from
presentation markup and towards structural markup. In early 2003 this journey is not yet over, but the
end is distantly irsight.

The development of the World Wide Web meant that the ability to render documents in multiple
media (or, at least, for both print and HTML display) became the central challenge for documentation
tools after about 1993. At the same time, even ordinary users were, under the influence of HTML,
becoming more comfortable with markup-centered systems. This led directly to an explosion of
interest in structural markup and the invention of XML after 1996. Suddenly the old-time Unix
attachment to markup-centered systems started looking prescient ratheatttaomary.

Today, in early 2003, most of the leading-edge development of XML-based documentation tools using
structural markup is taking place under Unix. But, at the same time, the Unix culture has yet to let go
of its older tradition of presentation-level markup systems. The creaking, clanking, armor-plated
dinosaur that is troff(1) has only partly been displaced by HTMUavid.



Cultural style

Most software documentation is written by technical writers for the least-common-denominator
ignorant — the knowledgeable writing for the knowledgeless. The documentation that ships with Unix
systems has traditionally written by programmers for their peers. Even when it is not peer-to-peer
documentation, it tends to be influenced in style and format by the enormous mass of
programmer-to-programmer documentation that ships with §jrstems.

The difference this makes can be summed up in one observation: Unix manual pages traditionally have
a section called BUGS. In other cultures, technical writers try to make the product look good by
omitting and skating over known bugs. In the Unix culture, peers describe the known shortcomings of
their software to each other in unsparing detail, and users consider a short but informative BUGS
section to be an encouraging sign of quality work. Commercial Unix distributions that have broken

this convention, either by suppressing the BUGS section or euphemizing it to a softer tag like
LIMITATIONS or ISSUES, have invariably fallen inttecline.

Where most other software documentation tends to to oscillate between incomprehensibility and
oversimplifying condescension, classic Unix documentation is written to be telegraphic but complete.

It does not hold you by the hand, but it usually points in the right direction. The style assumes an

active reader, one who is able to deduce obvious unsaid consequences of what is said, and who has the
self-confidence to trust thoskeductions.

Unix programmers tend to be pretty good at writing references, and most Unix documentation has the
flavor of a reference @ide memaoirefor someone who thinks like the document-writer but is not yet

an expert at his or her software. The results often look much more cryptic and sparse than they actually
are. Read every word carefully, because whatever you want to know will probably be there, or
deducible from what's there. Read every word carefully, because you will seldom be told anything
twice.



The zoo of Unix documentationformats

All the major Unix documentation formats except the very newest one are presentation-level markups
assisted by macro packages. We examine them here from oldesiést.

troff and the DWBtools

We discussed the DWB architecture and tools in Chggdinilanguageggas an example of how to
integrate a system of multiple minilanguages. Now we return to these tools in their functional role as a
typesettingsystem.

The troff(1) formatter interprets a presentation-level markup language. Recent implementations like
the GNUproject’'sgroff(1)emit Postscript by default, though it is possible to get other forms of output
by selecting a suitable driver. §€gamplel6.]for several of the troff(1) codes you might encounter

in documensources.

Example 16.1. troff(1) markup example

This is running text.

\" Comments begin with the request named by a backslash and double quote
ftB

This text will be in bold font.

ftR

This text will be back in the default (Roman) font.

These lines, going back to "This is running text", will

be formatted as a filled paragraph.

.bp

The bp request forces a new page and a paragraph break.

This line will be part of the second filled paragraph.

sp3

The .sp request emits the number of blank lines given as argument
.nf

The nf request switches off paragraph filling.

Until the fi request switches it back on

whitespace and layout will be preserved.

One word in this line will be in \fBbold\fR font.
fi

Paragraph filling is back on.

troff(1) has many other requests, but you are unlikely to see most of them directly. Very few
documents are written in bare troff. It supports a macro facility, and there are half a dozen macros in
more or less general use. Of these, the overwhelmingly most common is the ‘man’ macros used to

write Unix manual pages. Sggamplel6.2for asample.

Example 16.2. man markupexample

.SH SAMPLE SECTION

The SH macro starts a section, boldfacing the section title.

P

The P request starts a new paragraph. The | request sets its argument in
I italics.

AP *

This starts an indented paragraph with an asterisk label.

More text for the first bulleted paragraph.

TP



This first line will become a paragraph label
This will be the first line in the paragraph, further indented
relative to the label.

The blank line just above this one is interpreted as a request for a
paragraph break.

.SS A subsection

This is a subsection header.

Two of the other half-dozen historical troff macro libraries, ‘s’ and ‘mm’, are still in use. BSD Unix

has its own elaborate extended macro set, mdoc(7). All these are designed for writing technical
manuals and long-form documentation. They are similar in style but more elaborate than man macros,
and oriented towards producing typesetput.

There is a minor variant of troff(1) called nroff(1) that produces output for devices that can only
support constant-width fonts, like line printers and character-cell terminals. Whem you view a Unix
manual page within a terminal window, it is nroff(1) that has renderedyibtor

The DWB tools do the technical-documentation jobs they were designed for quite well, which is why
they have remined in continuous use for more than thirty years while computers increased a
thousandfold in capacity. They produce typeset text of reasonable quality on imaging printers, and can
throw a tolerable approximation of a formatted manual page onsgoegn.

They fall down badly in a couple of areas, however. Their selection of available fonts is limited. They
don’t handle images well. It's hard to get precise control of the positioning of text or images or
diagrams within a page. Support for multilingual documents is nonexistent. There are numerous other
problems, some chronic but minor and some absolute showstoppers for specific uses. But the most
serious problem is that because so much of the markup is presentation level, it's difficult to make good
web pages out of unmodified trafburces.

Nevertheless, at time of writing man pages remain the single most important form of Unix
documentation.

TeX

TeX (pronounced /teH/ with a rough h as though you are gargling) is a very capable typesetting
program which (like the Emacs editor) originated outside the Unix culture but is now thoroughly
naturalized in it. It was created by noted computer scientist Donald Kumgth he became impatient
with the quality of typography (and especially mathematical typesetting) that was available to him in
the late1970s.

TeX, like troff(1), is a markup-centered system. TeX’s request language is rather more powerful than
troff's; among other things, it is better at handling images, page-positioning content and images, and
internationalization. TeX is particularly good at mathematical typesetting, and unsurpassed at basic
typesetting tasks like kerning, line filling, and hyphenating. TeX has become the standard submission
format for most mathematical journals, and is actually now maintained as open source by a working
group of the the American Mathematical Society. It is also commonly used for scieapécs.

As with troff(1), human beings usually do not write large volumes of raw TeX macros by hand; they
use macro packages and various auxiliary programs instead. One particular macro package, LaTeX, is
almost universal, and nost people who say they’re composing in TeX almost always actually mean
they’re writing LaTeX. Like troff's macro packages, a lot of its requestsera-structural.



One important use of TeX that is normally hidden from the user is that other document-processing
tools often generate LaTeX to be turned into Postscript, rather than attempting the much more difficult
job of generating Postscript themselves. The xmito(1) front end that we discussed as a
shell-programming case study in Chafii2(Languagesises this tactic; so does the XML-DocBook
toolchain we’ll examine later in thishapter.

TeX has a wider application range than troff(1) and is in most ways a better design. It has the same
fundamental problems as troff(1) in an increasingly Web-centric word; its markup has strong ties to
the presentation level, and automatically generating good web pages from TeX sources is difficult and
fault-prone.

TeX is never used for Unix system documentation and only very rarely used for application
documentation; for those purposes, troff(1) is sufficient. But some software packages that originated in
academia outside the Unix community have imported the use of TeX as a documentation master
format; the Pythofanguagas one example. As we noted above, it is also heavily used for

mathematical and scientific papers, and will probably dominate that niche for somgegears

Texinfo

Texinfo is a documentation markup invented by the Free Software Foundation and used mainly for
GNU project documentation — including the documentation for such essential tools as Emacs and the
Gnu Compiler Collection.

Texinfo was the first markup system specifically designed to support both typeset output on paper and
hypertext output for browsing. The hypertext format was not, however, HTML; it was a more

primitive variety called ‘info’, originally designed to be browsed from within emacs. On the print side,
Texinfo turns into Tex macros and can go from thefeastscript.

The Texinfo tools can now generate HTML. But they don’t do a very good or complete job, and
because a lot of Texinfo’'s markup is at presentation level it is doubtful that they ever will. As of early
2003 the Free Software foundation is working on heuristic Texinfo to DocBook translation. Texinfo
will probably remain a live format for sontiene.

POD

Plain Old Documentation, the markup system used by the maintairfeesl df generates manual
pages, and has all the familiar problems of presentation-level markups, including trouble generating
goodHTML.

HTML

Since the mainstreaming of the World Wide Web in the early 1990s, a small but increasing percentage
of Unix projects have been writing their documentation directly in HTML. The problem with this
approach is that it is difficult to generate high-quality typeset output from HTML. There are particular
problems with indexing as well; the information needed to generate those is not préSevitin



DocBook

DocBook is an SGML and XML document type definition designed for large, complex technical
documents. It is alone among the markup formats used in the Unix community in being purely

structural. The xmito(1) tool discussed in Chaji2fLanguages$yupports rendering to HTML,
XHTML, PostscriptPDF, Windows Help markup, and several less importamats.

Several major open-source projects (including the Linux Documentation Project, Fregiz®be,
Samba, GNOME, and KDE) already use DocBook as a master format. This book was written in

XML-DocBook.

DocBook is a large topic. We'll return to it after summing up the problems with the current state of
Unix documentation.



The present chaos and a possible waput
Unix documentation is, at presentnass.

Between man, ms, mm, TeX, Texinfo, POD, HTML, and DocBook, the documentation master files on
modern Unix systems are scattered across eight different markup formats. There is no uniform way to
view all the rendered versions, they aren’t web-accessible, and theycanss4indexed.

Many people in the Unix community are aware that this is a problem. At time of writing most of the
effort towards solving it has come from open-source developers, who are more actively interested in
competing for acceptance by non-technical end-users than developers for proprietary Unixes have
been. Since 2000, practice has been moving towards use of XML-DocBook as a documentation
interchange format (conversion from the older SGML-DocBoainigl).

The goal, which is within sight but will take a lot of effort to achieve, is to equip every Unix system
with software that will act as a system-wide document registry. When system administrators install
packages, one step will be to enter the package’s XML-DocBook documentation into the registry. It
will then be rendered into a common HTML document tree and cross-linked to the documentation
alreadypresent.

Early versions of the document-registry software are already working. The problem of
forward-converting documentation in all seven formats into XML-DocBook is a large and messy one,
but the conversion tools are falling into place. Other political and technical problems remain to be
attacked, but are probabdpluble.

While there is not as of early 2003 a community-wide consensus that the older formats have to be
phased out, that seems the likeliest working oetvents.

Accordingly, we'll next take a very detailed look at DocBook and its toolchain. This description
should be read as an introduction to XML under Unix, a pragmatic guide to practice and as a major
case study. It's a good example of how, in the context of the Unix community, cooperation between
different project groups develops around shataddards.



DocBook

A great many major open-source projects are converging on DocBook as a standard format for their
documentation. The advocates of XML-based structural markup seem to have won the theoretical
argument, and an effective XML-DocBook toolchain is available in sperce.

Nevertheless, a lot of confusion still surrounds DocBook and the programs that support it. Its devotees
speak an argot that is dense and forbidding even by computer-science standards, slinging around
acronyms that have no obvious relationship to the things you need to do to write markup and make
HTML or Postscript from it. XML standards and technical papers are notoriously obscure.

Document Type Definitions

(Note: to keep the explanation simple, most of this section is going to tell some lies, mainly by
omitting a lot of history. Truthfulness will be fully restored in a followssgtion.)

DocBook is a structural-level markup language. Specifically, it is a dialect of XML. A DocBook
document is a piece of XML that uses XML tags for structonaikup.

In order for a document formatter to apply a stylesheet to your document and make it look good, it
needs to know things about the overall structure of your document. For example, it needs to know that
a book manuscript normally consists of front matter, a sequence of chapters, and back matter in order
to physically format chapter headers properly. In order for it to know this sort of thing, you need to
give it aDocument Typ®efinition or DTD. The DTD tells your formatter what sorts of elements can

be in the document structure, and in what orders thegmaear.

What we mean by calling DocBook an ‘application’ of XML is actually that DocBook is a DTD — a
rather large DTD, with somewhere around 400 tagfs in

Lurking behind DocBook is a kind of program calledadidating parser When you format a

DocBook document, the first step is to pass it through a validating parser (the front end of the
DocBook formatter). This program checks your document against the DocBook DTD to make sure
you aren’t breaking any of the DTD'’s structural rules (otherwise the back end of the formatter, the part
that applies your style sheet, might become quatdused)

The validating parser will either error out, giving you messages about places where the document
structure is broken, or translate the document into a stream of XML elements and text which the parser
back end combines with the information in your stylesheet to produce forroatped

SedFigurel6.1is a diagram of the wholgrocess:

Figure 16.1. Processing structuralocuments
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The part of the diagram inside the dotted box is your formatting softwamlonain Besides the
obvious and visible input to the formatter (the document source) you’'ll need to keep the two hidden
inputs of the formatter (DTD and stylesheet) in mind to understandfolitats.

Other DTDs

A brief digression into other DTDs may help make clear what parts of the previous section were
specific to DocBook and what parts are general to all structural-mkmikgpages.

(Text Encoding Initiative) is a large, elaborate DTD used primarily in academia for computer
transcription of literary texts. TEI's Unix-based toolchains use many of the same tools that are
involved with DocBook, but with different stylesheets and (of course) a diffEyEDt

XHTML, the latest version of HTML, is also an XML application described by a DTD, which explains
the family resemblance between XHTML and DocBook tags. The XHTML toolchain consists of web
browsers and a number of ad-hoc HTML-to-puitilities.

Many other XML DTDs are maintained to help people exchange structured information in fields as
diverse as bioinformatics and banking. You can looHliat af repositoriedo get some idea of the
varietyavailable.

The DocBooktoolchain

Normally, what you'll do to make XHTML from your DocBook sources is use the xmlto(1) front end.
Your commands will look likehis:

bash$ xmito xhtml foo.xml
bash$ Is *.html
ar01s02.html ar01s03.html ar01s04.html index.html

In this example, you converted an XML-Docbook document ndowam|  with three top-level
sections into an index page and two parts. Making one big page is @astyas

bash$ xmlto xhtml-nochunks foo.xml
bash$ Is *.html
foo.html

Finally, here is how you make Postscript fiointing:

bash$ xmlto ps foo.xml # To make Postscript
bash$ Is *.ps
foo.ps

To turn your documents into HTML or Postscript, you need an engine that can apply the combination
of DocBook DTD and a suitable stylesheet to your documenfE§aee16.3how the open-source
tools for doing this fitogether:

Figure 16.2. Present-day XML-DocBookoolchain
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Parsing your document and applying the stylesheet transformation will be handled by one of three
programs. The most likely onexsltproc,the parser that ships with Red Hatux. The other
possibilities are twdavaprograms, Saxon arXhlan.

It is relatively easy to generate high-quality XHTML from either DocBook; the fact that XHTML is
simply another XML DTD helps a lot. Translation to HTML is done by applying a rather simple
stylesheet, and that’s the end of the story. RTF is also simple to generate in this way, and from
XHTML or RTF it's easy to generate a flat ASCII text approximation finah.

The awkward case is print. Generating high-quality printed output (which means, in practice, Adobe’s
PDF(Portabldbocument Format) is difficult. Doing it right requires algorithmically duplicating the
delicate judgments of a human typesetter moving from content to preselaadion

So, first, a stylesheet translates Docbook’s structural markup into another dialect of XML —
FO(FormattingObjects). FO markup is very much presentation-level; you can think of it as a sort of
XML functional equivalent of troff. It has to be translated to Postscript for packaginga

In the toolchain shipped with Red Hahux, this job is handled by a TeX macro package called
PassiveTeXlt translates the formatting objects generateaditproc into DonaldKnuth’s TeX
language. TeX'’s output, known BY/1 (DeVice Independent) format, is then massagedRmiB.

If you think this bucket chain of XML to Tex macros to DVI to PDF sounds like an awkward kludge,
you're right. It clanks, it wheezes, and it has ugly warts. Fonts are a significant problem, since XML
and TeX and PDF have very different models of how fonts work; also, handling internationalization
and localization is a nightmare. About the only thing this code path has going for it isthiksit

The elegant way will bEOP,a direct FO-to-Postscript translator being developed bpplaehe

project. With FOP, the internationalization problem is, if not solved, at least well confined; XML tools
handle Unicode all the way through to FOP. Glyph to font mapping is also strictly FOP’s problem.
The only trouble with this approach is that it doesn’'t work — yet. As of early 2003 FOP is in an
unfinished alpha state — usable, but with rough edges and mieainges.

SedFigure16.3for what the FOP toolchain lookg&e:

Figure 16.3. Future XML-DocBook toolchain withFOP
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FOP has competition. There is another project called xsl-fo-proc which aims to do the same things as
FOP, but inC++ (and therefore both faster tha@vaand not relying on the Java environment). As of
early 2003 xsl-fo-proc is in an unfinished alpha state, not as far aldrfgRas

Migration tools

The second biggest problem with DocBook is the effort needed to convert old-style presentation
markup to DocBook markup. Human beings can usually parse the presentation of a document into
logical structure automatically, because (for example) they can tell from context when an italic font
means ‘emphasis’ and when it meabs something else such as ‘this is apgbrasgi.

Somehow, in converting documents to DocBook, those sorts of distinctions need to be made explicit.
Sometimes they’re present in the old markup; often they are not, and the missing structural
information has to be either deduced by clever heuristics or addeklunyaan.

Here is a summary of the state of conversion tools from various other formats. None of these do a
completely prefect job; inspection and perhaps a bit of hand-editing by a human being will be needed
afterconversion.

GNU Texinfo

The Free Software Foundation has made a policy decision to support DocBook as an interchange
format. Texinfo has enough structure to make reasonably good automatic conversion possible
(human editing is still needed afterwards, but not much of it), and the 4.x versioageaihfo

feature a-docbook switch that generates DocBook. More atliiekeinfo projecbag¢

POD

There is OD::DocBookmodule that translates Plain Old Documentation markup to DocBook.

It claims to support every DocBook tag except the L<> italic tag. The man page also says
“Nested =over/=back lists are not supported within DocBook.” but notes that the module has been
heavilytested.

LaTeX

There is a project call§BeX4hithat (according to the author of PassiveTeX) can generate
DocBook fromLaTeX.


http://www.gnu.org/directory/texinfo.html
http://www.cpan.org/modules/by-module/Pod/
http://www.lrz-muenchen.de/services/software/sonstiges/tex4ht/mn.html

man pages and other troff-basadrkups

This is generally considered the biggest and nastiest conversion problem. And indeed, the basic
troff(1) markup is at too low a presentation level for automatic conversion tools to do much of
any good. However, the gloom in the picture lightens significantly if we consider translation from
sources of documents written in macro packages like man(7). These have enough structural
features for automatic translation to get sdraetion.

The author of this book wrote a tool to do troff-to-DocBook himelf, because he couldn’t find
anything else that did a half-decent job of it. It's catledlifte It will translate to either SGML

or XML DocBook from man(7), mdoc(7), ms(7), or me(7) macros. See the documentation for
details.

Editing tools

One thing we do not have at time of writing is a good open-source structure editor for SGML/XML
documents.

is a GUI word processor that uses LaTeX for printing and supports structural editing of LaTeX
markup. There is a LaTeX package that generates DocBookjhava- documenjescribing how to
write SGML and XML in the LyXGUI.

the GNOME XML Editor, aims at nontechnical users. But the software is still alpha, more a
proof of concept than anything useful, and the project group seems not to be very active; there have
been no updates of the website between May 2001 and time of writing.

[GNU TeXMacsis a project aimed at producing an editor that is good for technical and mathematical
material, including displayed formulas. 1.0 was released in April 2002. The developers plan XML
support in the future, but it's not theyet.

is a project to put together a GUI editor for DocBook based on the Thot toolkit. It may be
moribund; the web page was not updated from November 2001 to time of writing.

Most people still hack the tags by hand using either vi or Emacs, using psgml to valideseilise

Related standards andpractices

The tools are coming together, if slowly, to edit and format DocBook markup. But DocBook itself is a
means, not an end. We’'ll need other standards besides DocBook itself to accomplish the
searchable-documentation-database objective. There are two big issues: document cataloguing and
metadata.

The|Scrollkeepgiproject aims directly to meet this need. It provides a simple set of script hooks that
can be used by package install and uninstall productions to register and unregisiecthméntation.

Scrollkeeper uses tli@pen Metadat&ormat This is a standard for indexing open-source
documentation analogous to a library card-catalog system. The idea is to support rich search facilities
that use the card-catalog metadata as well as the source text of the docunitsgkHition



http://www.tuxedo.org/~esr/doclifter/
http://www.lyx.org/
http://bgu.chez.tiscali.fr/doc/db4lyx/
http://idx-getox.idealx.org/
http://www.math.u-psud.fr/~anh/TeXmacs/TeXmacs.html
http://www.freesoftware.fsf.org/thotbook/
http://scrollkeeper.sourceforge.net/
http://www.ibiblio.org/osrt/omf/

SGML

In previous sections, we have thrown away a lot of DocBook’s history. XML has an older brother,
SGML or Standard Generalized Markbanguage.

Until mid-2002, no discussion of DocBook would have been complete without a long excursion into
SGML, the differences between SGML and XML, and detailed descriptions of the SGML DocBook

toolchain. Life can be simpler now; a XML DocBook toolchain is available in open source, works as
well as the SGML toolchain ever did, and is easier to use, If you don’t think you'll ever have to deal
with old SGML-Docbook documents, you can skip the remainder oféison.

DocBookSGML

DocBook was originally an SGML application, and there was an SGML-based DocBook toolchain
that is now moribund. There are minor differences between the DocBook SGML DTD and the
DocBook XML DTD, but for an introductory discussion we can ignore them. The only one that's
normally user-visible is that in SGML contentless tags did not need to have a trailing slash added to
them before the closing >. (Requiring the trailing / means XML parsers can be a lot simpler, because
they don’t have to know about the DTD to know which opening tagsaiesers.)

Versions of HTML up to 4.01 (before XHTML) were SGML applications. TEI was originally an
SGML application, too. The groups managing all three DTDs jumped to XML for the same reason
DocBook’s developers did — it's drastically simpler. SGML was extremely complex; unmanageably
S0, as it turns out. The specification was a dense 150 pages and it is not reliably reported that any
software ever fully implementad

The toolchain diagram we saw earlier was simplified; it only showed the XML toolchaiRigaee]
[16.4for the historically correctersion:

Figure 16.4. XML and SGML toolchainscompared
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The DSSSL toolchain is what processed DocBook SGML. Under it, a document goes from DocBook
format through one of two closely-related stylesheet engines called Jade and OpenJade. These turn it
into a TeX-macro markup. which is processed by a package called JadeTé¥/ lisitavhich then get
turned intoPostscript.

Why SGML DocBook isdead

The DSSSL toolchain is, as far as new development goes, effectively dead. The XSLT toolchain
reached production status in early 2001. It's where DocBook developers are putting almost all of their
effort.

The reason for the change to XML was threefold. First, SGML turned out to be too complicated to use;
then, DSSSL turned out to be too complicated to live with; then, significant parts of the DSSSL
toolchain turned out to be weak and irredeemaidgsy.

Relative to SGML, XML has a reduced feature set that is sufficient for almost all purposes but much
easier to understand and build parsers for. SGML-processing tools (such as validating parsers) have to
carry around support for a lot of features that DocBook and other text markup systems never actually
used. Removing these features made XML simpler and XML-processindastals

The language used to describe SGML DTDs is sufficiently spiky and forbidding that composing
SGML DTDs was something of a black art. XML DTDs, on the other hand, can be described in a
dialect of XML itself; there does not need to be a separate DTD language. An XML description of an
XML DTD is called aschemahe term DTD itself will probably pass out of use as the standards for
schemas firnup.

But mostly the DSSSL toolchain is dead because DSSSL itself, the SGML stylesheet description
language in that toolchain, proved just too arcane for most human beings, and made stylesheets too
difficult to write andmodify.

XML-Dochook References

One of the things that makes learning DocBook difficult is that the sites related to it tend to
overwhelm the newbie with long lists of W3C standards, massive exercises in SGML theology, and
dense thickets of abstract terminology. &4 In ANutshel[[Harold&Means]for a good

book-length general introduction. Here are some useful M&durces:

Norman Walsh’©ocBook: The Definitiv&uideis availablgin prinff andon thewel This is indeed
the definitive reference, but as an introduction or tutorial it's a disaster. Insteathisead

[Writing Documentation Using DocBook: A Cra€lourse This is an excellerttitorial.

There is an equally excellgpocBookFAQ with a lot of material on styling HTML output. There is
also a DocBoojwiki]

Finally, thgThe XML CoverPagepwill take you into the jungle of XML standards if you really want
to gothere.



http://www.oreilly.com/catalog/docbook/
http://www.docbook.org/tdg/en/html/docbook.html
http://www.bureau-cornavin.com/opensource/crash-course/index.html
http://www.dpawson.co.uk/docbook/
http://docbook.org/wiki/moin.cgi
http://xml.coverpages.org/

How to write Unix documentation

The advice we gave earlier in the chapter about reading Unix documentation can be turned around.
When you write documentation for people within the Unix cultdog't dumb itdown and don’t

think for a moment that that volume will be mistaken for quality. If you write as if for idiots, you will
be written off as an idiot yourself. Especially, neseeromit functional details because you fear they
might be confusing, or warnings about problems because you don’t want to look bad. It is
unanticipatedproblems that will cost you credibility and users, not the ones you were laboest

If your project is of any significant size, you should probably be shipping three different kinds of
documentation: man pages, a tutorial manual, and a FAQ (Frequently Asked Quéstions)

In your source code, include the standard metainformation files described in

section on open-source release practices, suRBEADMEEven if your code is going to be
proprietary, these are Unix conventions and future maintainers coming from a Unix background will
come up to speed faster if they &olowed.

Your man pages should be command references in the traditional Unix style for the traditional Unix
audience. The tutorial manual should be long-form documentation for non-technical users. And the
FAQ should be an evolving resource that grows as your software support group learns what the
frequent questions are and how to ansivem.

There are more specific technical practices you should adopt if you want to get a little ahead of early
2003'spractice:

1. Maintain your document masters in XML-DocBook. Even your man pages can be DocBook
RefEntry documents. There is a very gdd®WTQ on writing manual pages that explains the
sections and organization your users will expece®.

2. Ship the XML masters. Also, in case your users’ systems don’t have xmlto(1) ship the troff
sources that you get by runnirgilto man on your masters. Your software distribution’s
installation procedure should install those in the normal way, but direct people to the XML files if
they want to write documentatiqatches.

3. Make your project’s installation packa§erollkeeper-ready.

4. Generate XHTML from your masters (witmlto xhtml) andmake it available from your
project’s welpage.

Whether you're using XML-Docbook as a master format, you’'ll want to find a way to convert your
documentation to HTML. Whether your software is open-source or proprietary, users are increasingly
likely to find it via the Web. Putting your documentation on-line has the direct effect of making it
easier for potential users and customers who know your software exists to read it and learn about it. It
has the indirect effect that your software will become more likely to turn up in a Web search by people
who don’t know abouit.


http://www.linuxdoc.org/HOWTO/mini/Man-Page.html
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Programming In The Unix Community
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Software is like sex — it's better when ftese
--LinusTorvalds

We concluded Chapt@r(History] by observing the largest-scale pattern in Unix’s history; it has
flourished when its practices most closely approximated open source, and stagnated when they did not.
We then asserted in Chagfief(Re-Usé)that open-source development tools tend to be of high

guality. We’'ll begin this chapter by sketching an explanation of how and why open-source
developmentorks.

We’'ll then descend from realm of abstraction and describe some of the most important folk customs
that Unix has picked up from the open-source community — in particular, the community-evolved
guidelines for what a good source-code release looks like. Many of them could be profitably adopted
by developers on other modern operating systemahs

We'll describe these customs on the assumption that you are developing open source; most are still
good ideas even if you are writing proprietary software. The open-souce assumption is also historically
appropriate, because many of these customs (like hawriA®MHile) found their way back into
proprietary Unix shops via ubiquitous open-source tools like patch(1), Ema&Cahd



Unix and opensource

Open-source development exploits the fact that characterizing and fixing bugs — unlike, say,
implementing a particular algorithm — is a task that lends itself well to being split into multiple
parallel subtasks. Exploration of the neighborhood of possibilities near a prototype design also
parallelizes well. With the right technological and social machinery in place, development teams that
are loosely networked and very large can do astoundingly\godd

Astonishingly good, that is, if you are carrying around the mental habits developed by people who
treat process secrecy and proprietary control as a given. FrerMythicaMan-MontH[Brooks] until

the rise ofLinux, the orthodoxy in software engineering was all about small, closely managed teams
within the institutional context of heavyweight organizations like corporationg@retnment.

The early Unix community, before tRer'&T divestiture, was a paradigmatic example of open source

in action. While the pre-divestiture Unix code was technically and legally proprietary, it was treated as
a commons within its user/developer community. Volunteer efforts were self-directed by the people
most strongly motivated to solve problems. From these choices many good things flowed. Indeed, the
technique of open-source development evolved as an unconscious folk practice in the Unix community
for more than a quarter century years before it was analyzed and labeled in the late 19B0s (See
Cathedral and th@azaaf[RaymondOJlandUnderstanding Open Source Softw&revelopment
[[Feller&Fitzgerald]

I still marvel at how oblivious we all were to the implications of our own
behavior. Several people came very close to getting it; Richard Gabriel in his
“Worse Is Better” paper from 19§Gabriel]is the best known, but you can find
prefigurations in BrooKEBrooks] (1975) and as far back as Vyssotsky and
Corbatod’s meditations on the Multics design (1965). | was immersed in
open-source development fwrentyyearsbefore | caught on. And if | hadn’t
nailed some theses about it to the cathedral door, I'm convinced someone else
would have; after the great Internet explosion of 1993-1994 iirveagable.

--Eric S.Raymond

The rules of open-source developmentsangple:

1. Let the source bepen.Have no secrets. Make the code and the process that produces it public.
Encourage third-party peer review. Grow the co-developer community as big eanyou

2. Release early, releasdten.A rapid release tempo means quick and effective feedback. When
each incremental release is small, changing course in response to real-world feedback is easier.
But don’t release too early; a first release that won't build and can permanently kill interest in a
project (as nearly happenedMvimzilla).

3. Reward contribution witlpraise.If you can’t give your co-developers material rewards, they
need immaterial ones. Even if you can, people will often work harder for reputation than they
would forgold.

Open-source development uses large teams of programmers distributed over the Internet and
communicating primarily via email and Web documents. Typically, most contributors to any given
project are volunteers contributing in order to be rewarded by the increased usefulness of the software
to them, and by reputation incentives. A central individual or core group steers the project; other
contributors may drop in and drop aygoradically.



Open-source projects follow the Unix-tradition advice of automating wherever possible. They use the
patch(1) tool to pass around incremental changes. Many projects (and all large ones) have
network-accessible code repositories using version-control systems like CVS (recall the discussion in
chaptefL3 (Tools). Use of automated bug- and patch-tracking systems is@tsmon.

In 1997, almost nobody outside the hacker culture understood that it was even possible to run a large
project this way, let alone get high-quality results. In 2003 this is no longer news; projecisuike
Apache,and Mozilla have achieved both success and high publhlity.

Abandoning the habit of secrecy in favor of prodemsssparencand and peer review was the crucial
step by which alchemy became chemistry. In the same way, it is beginning to appear that open-source
development may signal the long-awaited maturation of software developmetiseiplne.

Up

Best practices for working with
open-sourcelevelopers
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Bestpractices for working with open-sourcedevelopers

Much of what constitutes best practice in the open-source community is a hatural adaptation to
distributed development; you'll read a lot in the rest of this chapter about behaviors that maintain good
communication with other developers. Where Unix conventions are arbitrary (such is the standard
names of files that convey meta-information about a source distribution) they often trace back either to
Usenetin the early 1980s, or the conventions and standards of the GNU project

Good patching practice

Most people get involved in open-source software by writing patches for other peoples’ software
before releasing projects of their own. Suppose you've written a set of source-code changes for
someone else’s baseline code. Now put yourself in that person’s shoes. How is he to judge whether to
include thepatch?

It is very difficult to judge the quality of code. So developers tend to evaluate patches by the quality of
the submission. They look for clues in the submitter’s style and communications behavior instead —
indications that the person has been in their shoes and understands what it’s like to have to evaluate
and merge an incomirngatch.

This is actually a pretty reliable proxy for code quality. In many years of dealing with patches from
many hundreds of strangers, the author has only seldom seen a patch that was thoughtfully presented
and respectful of his time but technically bogus. On the other hand, experience teaches that patches
which look careless or are packaged in a lazy and inconsiderate way are very likely to betually

bogus.

Here are some tips on how to get your pactepted:

Do send patches, don’t send whole archives fites

If your change includes a new file that doesn't exist in the code, then of course you have to send the
whole file. But if you're modifying an already-existing file, don’t send the whole file. Send a diff
instead; specifically, send the output of the diff(1) command run to compare the baseline distributed
version against your modifiegersion.

The diff(1) command and its dual, patch(1) are the most basic tools of open-source development. Diffs
are better than whole files because the developer you're sending a patch to may have changed the
baseline version since you got your copy. By sending him a diff you save him the effort of separating
your changes from his; you show respect fottinie.

Sendpatches against the current version of theode.

It is both counterproductive and rude to send a maintainer patches against the code as it existed several
releases ago, and expect him to do all the work of determining which changes duplicate things he have
since done, versus which things are actually novel in gatah.



As a patch submitter, it igour responsibility to track the state of the source and send the maintainer a
minimal patch that expresses what you want done to the main-line codebase. That means sending a
patch against the currevgrsion.

Don't include patches for generatediles.

Before you send your patch, walk through it and delete any patch bands for files in it that are going to
be automatically regenerated once he applies the patch and remakes. The classic examples of this error
areC files generated by Bison &tex.

These days the most common mistake of this kind is sending a diff with a huge band that is nothing
but changebars between yaanfigure script and his. This file is generateddaytoconf.

This is inconsiderate. It means your recipient is put to the trouble of separating the real content of the
patch from a lot of bulky noise. It's a minor error, not as important as some of the things we’ll get to
further on — but it will count againgou.

Don’t send patch bands that just tweak RCS or SCC$-symbols.

Some people put special tokens in their source files that are expanded by the version-control system
when the file is checked in: the $ld$ construct used by RCS and C\aimiple.

If you're using a local version-control system yourself, your changes may alter these tokens. This isn’t
really harmful, because when your recipient checks his code back in after applying your patch they’ll
get re-expanded based lois version-control status. But those extra patch bands are noise. They're
distracting. It's more considerate not to sémein.

This is another minor error. You'll be forgiven for it if you get the big things right. But you want to
avoid itanyway.

Do use -c or -u format, don’'t use the default (-eformat

The default (-e) format of diff(1) is very brittle. It doesn’t include any context, so the patch tool can't
cope if any lines have been inserted or deleted in the baseline code since you took the copy you
modified.

Getting an -e diff is annoying, and suggests that the sender is either an extreme newbie, careless, or
clueless. Most such patches get tossed out without a stwnrght.

Do include documentation with yourpatch

This is very important. If your patch makes a user-visible addition or change to the software’s features,
include changes to the appropriate man pages and other documentation files paiatubo not

assume that the recipient will be happy to document your code for you, or else to have undocumented
features lurking in theode.

Documenting your changes well demonstrates some good things. First, it's considerate to the person
you are trying to persuade. Second, it shows that you understand the ramifications of your change well
enough to explain it to somebody who can’t see the code. Third, it demonstrates that you care about
the people who will ultimately use tiseftware.



Good documentation is usually the most visible sign of what separates a solid contribution from a
quick and dirty hack. If you take the time and care necessary to produce it, you'll find you're already
85% of the way to having your patch accepted with rdesgelopers.

Do include an explanation with yourpatch

Your patch should include cover notes explaining why you think the patch is necessary or useful. This
is explanation directed not to the users of the software but to the maintainer to whom you are sending
the patch.

The note can be short — in fact, some of the most effective cover notes I've ever seen just said "See
the documentation updates in this patch". But it should show theatightie.

The right attitude is helpful, respectful of the maintainer’s time, quietly confident but unassuming. It's
good to display understanding of the code you’re patching. It's good to show that you can identify

with the maintainer’s problems. It's also good to be up front about any risks you perceive in applying
the patch. Here are some examples of the sorts of explanatory comments that experienced developers
send:

“I've seen two problems with this code, X and Y. | fixed problem X, but | didn’t try addressing
problem Y because | don't think | understand the part of the code that | believe is involved.

“ Fixed a core dump that can happen when one of the foo inputs is too long. While | was at it, | went
looking for similar overflows elsewhere. | found a possible one in blarg.c, near line 666. Are you sure
the sender can’'t generate more than 80 characters per transniission?

“ Have you considered using the Foonly algorithm for this problem? There is a good implementation
at <http://www.somesite.com/~jsmith/foonly.htmf>.

“ This patch solves the immediate problem, but | realize it complicates the memory allocation in an
unpleasant way. Works for me, but you should probably test it under heavy load before shipping.

“ This may be featurititis, but I'm sending it anyway. Maybe you'll know a cleaner way to implement
the feature’

Do include useful comments in youccode

A maintainer will want to have strong confidence that he understand your changes before merging
them in. This isn’t an invariable rule; if you have a track record of good work with the maintainer, he
may just run a casual eyeball over the changes before checking them in semi-automatically. But
everything you can do to help him understand your code and decrease my uncertainty increases your
chances that your patch will becepted.

Good comments in your code help the maintainer understand it. Bad condioehts
Here’s an example of a badmment:
/* norman newbie fixed this 13 Aug 2001 */

This conveys no information. It's nothing but a muddy territorial bootprint you're planting in the
middle of the maintainer’s code. If he takes your patch (which you've made less likely) he will almost
certainly strip out this comment. If you want a credit, include a patch band for the plaj&r
HISTORYfile. He'll probably takehat.



Here’s an example of a goedmment:

/*

* This conditional needs to be guarded so that crunch_data()

* never gets passed a NULL pointer. <norman_newbie@foosite.com>
*/

This comment shows that you understand not only the maintainer’s code but the kind of information
that he needs to have confidence in your changes. This kind of cominesthe confidence in your
changes.

Good project- and archive- namingpractice

As the load on maintainers of archives like Metalab, SourceForge, and CPAN increases, there is an
increasing trend for submissions to be processed partly or wholly by programs (rather than entirely by
ahuman).

This makes it more important for project and archive-file names to fit regular patterns that computer
programs can parse andderstand.

Use GNU-style names with a stem and major.minor.patcimumbering.

It's helpful to everybody if your archive files all have GNU-like names -- all-lower-case alphanumeric
stem prefix, followed by a dash, followed by a version number, extension, anduffiers.

Let's suppose you have a project you call ‘foobar’ at version 1, release 2, level 3. If it's got just one
archive part (presumably the sources), here’s what its names sbaduld

foobar-1.2.3.tar.gz
The sourcarchive
foobar.Ism
The LSM file (assuming you're submitting kdetalab).
Pleasedon’t usethese:
foobarl23.tar.gz

This looks to many programs like an archive for a project called‘foobar123’ with no version
number.

foobarl.2.3.tar.gz

This looks to many programs like an archive for a project called ‘foobarl’ at ver8ion
foobar-v1.2.3.tar.gz

Many programs think this goes with a project calfedbar-v1'.

foo_bar-1.2.3.tar.gz



The underscore is hard for people to speak, typereandmber.
FooBar-1.2.3.tar.gz

Unless youike looking like a marketing weenie. This is also hard for people to speak, type, and
remember.

If you have to differentiate between source and binary archives, or between different kinds of binary,
or express some kind of build option in the file name, please treat that as a file extensiafteo go
the version number. That is, pleasethis:

foobar-1.2.3.src.tar.gz

sources
foobar-1.2.3.bin.tar.gz

binaries, type naspecified
foobar-1.2.3.bin.ELF.tar.gz

ELF binaries
foobar-1.2.3.bin.ELF.static.tar.gz

ELF binaries staticallyinked
foobar-1.2.3.bin.SPARC.tar.gz

SPARCDbinaries

Pleasadon’t use names like ‘foobar-ELF-1.2.3.tar.gz’, because programs have a hard time telling type
infixes (like *-ELF") from thestem.

A good general form of name has these partsder:
1. projectprefix
2. dash
3. versionnumber
4. dot
5. "src" or "bin" (optional)
6. dot or dash (dgpreferred)
7. binary type and option®ptional)

8. archiving and compressiaxtensions



But respect local conventions wherappropriate

Some projects and communities have well-defined conventions for names and version numbers that
aren’t necessarily compatible with the above advice. For instApeehemodules are generally

named like mod_foo, and have both their own version number and the version of Apache with which
they work. LikewisePerlmodules have version numbers that can be treated as floating point numbers
(e.g., you might see 1.303 rather than 1.3.3), and the distributions are generally named
Foo-Bar-1.303.tar.gz for version 1.303 of module Foo::Bar. (Perl itself, on the other hand, switched to
using the conventions described here in 18@9.)

Look for and respect the conventions of specialized communities and developers; for general use,
follow the aboveguidelines.

Try hard to choose a name prefix that is unique and easy tgpe

The stem prefix should be common to all a project’s files, and it should be easy to read, type, and
remember. So please don’t use underscores. And don’t capitalize or BiCapitalize without extremely
good reason — it messes up the natural human-eyeball search order and looks like some marketing
weenie trying to belever.

It confuses people when two different projects have the same stem name. So try to check for collisions
before your first release. Two good places to check afadleg file ofibibliojand the application

index afFreshmedtAnother good place to checSsurceFordedo a name searthere.

Good developmentpractice

Don't rely on proprietary code

Don't rely on proprietary languages, libraries, or other code. Doing so is risky business at the best of
times; in the open-source community, it is considered downright rude. Open-source developers don't
trust code for which they can’t review theurce.

UseGNU autotools

Configuration choices should be made at compile-time. A significant advantage of Open Source
distributions is they allow the package to adapt at compile-time to the environment it finds. This is
critical as it allows the package to run on platforms its developers have never seen, and it allows the
software’s community of users to do their own ports. Only the largest of development teams can afford
to buy all of the hardware and hire enough employees to support even a limited nupiaiorons.

Therefore: use the GNU autotools to handle portability issues, do system-configuration probes, and
tailor your makefiles. People building from sources today expect to be able to type "configure; make;
make install" and get a clean build — and rightly so. There is a good tutorial on thefpetéols

autoconf and autoheader are pretty robust. automake, on the other hand, is still buggy and brittle as of
early 2003 you may have to maintain your own Makefile.in. Fortunately it's the least important of the
autotools.

Regardless of your approach to configuration, do not ask the user for system information at
compile-time. The user installing the package does not know the answers to your questions, and this
approach is doomed from the start. The software must be able to determine for itself any information


http://metalab.unc.edu/pub/Linux
http://www.freshmeat.net/
http://www.sourceforge.net/
http://seul.org/docs/autotut/

that it may need at compile- mstall-time.

Testyour code beforerelease

A good test suite allows the team to buy inexpensive hardware for testing and then easily run
regression tests before releases. Create a strong, usable test framework so that you can incrementally
add tests to your software without having to train developers up in the intricacies of shédest

Distributing the test suite allows the community of users to test their ports before contributing them
back to thegroup.

Encourage your developers to use a wide variety of platforms as their desktop and test machines so
that code is continuously being tested for portability flaws as part of ndewalopment.

Sanity-checkyour code beforerelease

If you're writing C/C++using GCC, test-compile with -Wall and clean up all warning messages

before each release. Compile your code with every compiler you can find — different compilers often
find different problems. Specifically, compile your software on a true 64-bit machine. Underlying data
types can change on 64-bit machines, and you will often find new problems there. Find a UNIX
vendor’s system and run the lint utility over ysaftware.

Run tools that for memory leaks and other run-time errors (for example, Rational’s Purify suite or
Parasoft’s Insure). Generally these tools are commercial, but single-user licenses are inexpensive —
designate one member of your team as the Purify user, and have them run your test siRigritynder

For Pythonprojects, thfPyCheckdprogram can be a useful check. It's not out of beta yet, but
nevertheless often catches nontriwgtors.

If you're writing Perl,check your code with perl -c (and maybe -T, if applicable). Use perl -w and 'use
strict’ religiously. (See the Perl documentation for furitiscussion.)

Sanity-checkyour documentation and READMESs beforerelease

Spell-check your documentation, README files and error messages in your software. Sloppy code,
code that produces warning messages when compiled, and spelling errors in README files or error
messages, leads users to believe the engineering behind it is also haphaglampsnd

RecommendedC/C++ portability practices

If you are writingC, feel free to use the full ANSI features. Specifically, do use function prototypes,
which will help you spot cross-module inconsistencies. The old-style K&R compilers are ancient
history.

Do not assume compiler-specific features such as the GCC "-pipe" option or nested functions are
available. These will come around and bite you the second somebody ports to a non-Linux, non-GCC
system.

Code required for portability should be isolated to a single area and a single set of source files (for
example, an "o0s" subdirectory). Compiler, library and operating system interfaces with portability
issues should be abstracted to files in this directory. This includes variables such as "errno", library
interfaces such as "malloc”, and operating system interfaces stmmag".


http://sourceforge.net/projects/pychecker

Portability layers make it easier to do new software ports. It is often the case that no member of the
development team knows the porting platform (for example, there are literally hundreds of different
embedded operating systems, and nobody knows any significant fraction of them). By creating a
separate portability layer it is possible for someone who knows the port platform to port your software
without having to understant

Portability layers simplify applications. Software rarely needs the full functionality of more complex
system calls such as mmap or stat, and programmers commonly configure such complex interfaces
incorrectly. A portability layer with abstracted interfaces ("__file_exists" instead of a call to stat)
allows you to export only the limited, necessary functionality from the system, simplifying the code in
your application.

Always write your portability layer to select based on a feature, never based on a platform. Trying to
create a separate portability layer for each supported platform results in a multiple update problem
maintenance nightmare. A "platform" is always selected on at least two axes: the compiler and the
library/operating system release. In some cases there are three axes, as when Linux venddEs select a
library independently of the operating system release. With M vendors, N compilers and O operating
system releases, the number of "platforms™ quickly scales out of reach of any but the largest
development teams. By using language and systems standards such as ANSI and POSIX 1003.1, the
set of features is relativebonstrained.

Portability choices can be made along either lines of code or compiled files. It doesn’'t make a
difference if you select alternate lines of code on a platform, or one of a few different files. A rule of
thumb is to move portability code for different platforms into separate files when the implementations
diverged significantly (shared memory mapping on UNIX vs. Windows), and leave portability code in
a single file when the differences are minimal (using gettimeofday, clock gettime, ftime or time to
find out the currentime-of-day).

Avoid using complex types such as "off_t" and "size_t". They vary in size from system to system,
especially on 64-bit systems. Limit your usage of "off_t" to the portability layer, and your usage of
"size_t" to mean only the length of a string in memory, and notigey

Never step on the namespace of any other part of the system, (including file names, error return values
and function names). Where the namespace is shared, document the portion of the namespace that you
use.

Choose a coding standard. The debate over the choice of standard can go on forever — regardless, it is
too difficult and expensive to maintain software built using multiple coding standards, and so some
coding standard must be chosen. Enforce your coding standard ruthlessly, as consistency and
cleanliness of the code are of the highest priority; the details of the coding standard itself are a distant
second.

Good distribution-making practice

These guidelines describe how your distribution should look when someone downloads, retrieves and
unpackast.



Make sure tarballs always unpack into a single newlirectory

The single most annoying mistake fledgling contributors make is to build tarballs that unpack the files
and directories in the distribution into the current directory, potentially stepping on files already
located thereNever dahis!

Instead, make sure your archive files all have a common directory part named after the project, so they
will unpack into a single top-level directory direchgneaththe currenbne.

Examplel7.1shows a makefile trick that, assuming your distribution directory is named ‘foobar’ and
SRC contains a list of your distribution files, accomplighés

Example 17.1. Tar archive makemproduction

foobar-$(VERS).tar.gz:
@Is $(SRC) | sed s:":foobar-$(VERS)/: >MANIFEST
@(cd ..; In -s foobar foobar-$(VERS))
(cd ..; tar -czvf foobar/foobar-$(VERS).tar.gz ‘cat foobar/MANIFEST")
@(cd ..; rm foobar-$(VERS))

Have a README

Have a file calleREADMIBr READ.MEthat is a roadmap of your source distribution. By ancient
convention (originally, otJsenetin the early 1980s), this is the first file intrepid explorers will read
after unpacking theource.

Good things to have in the README&clude:
1. A brief description of th@roject.
2. A pointer to the project website (if it hase)
3. Notes on the developer’s build environment and potential portapititylems.
4. A roadmap describing important files asubdirectories.
5. Either build/installation instructions or a pointer to a file containing same (uSN&IyALL ).
6. Either a maintainers/credits list or a pointer to a file containing same (USIREDITS).

7. Either recent project news or a pointer to a file containing same (uSUEWS

Respectand follow standard file namingpractices

Before even looking at tHREADMEyour intrepid explorer will have scanned the filenames in the
top-level directory of your unpacked distribution. Those names can themselves convey information.

By adhering to certain standard naming practices, you can give the explorer valuable clues about what
to look innext.

Here are some standard top-level file names and what they mean. Not every distribution needs all of
these.



README or READ.ME
the roadmap file, to be redidst
INSTALL
configuration, build, and installatianstructions
CREDITS
list of projectcontributers
NEWS
recent projechews
HISTORY
projecthistory
COPYING
project license terms (GNtbnvention)
LICENSE
project licens¢erms
MANIFEST
list of files in thedistribution
FAQ
plain-text Frequently-Asked-Questions document forpttogect
TAGS
generated tag file for use by Emacwior

Note the overall convention that filenames with all-caps names are human-readable metainformation
about the package, rather than build components. This elaboratiorREALRMEvas developed early
on at the Free Softwafeundation.

Having aFAQfile can save you a lot of grief. When a question about the project comes up often, put it
in theFAQ then direct users to read the FAQ before sending questions or bug reports. A well-nurtured
FAQ can decrease the support burden on the project maintainers by an order of magnituée or

Having aHISTORY or NEWSile with timestamps in it for each release is valuable. Among other
things, it may help establish prior art if you are ever hit with a patent-infringement lawsuit (this hasn't
happened to anyone yet, but best tplmpared).



Designfor Upgradability

Your software will change over time as you put out new releases. Some of these changes will not be
backward-compatible. Accordingly, you should give serious thought to designing your installation
layouts so that multiple installed versions of your code can coexist on the same system. This is
especially important for libraries — you can’t count on all your client programs to upgrade in lockstep
with your APlchanges.

The Emacs, Python, and Qt projects have a good convention for handling this; version-numbered
directories (another practice that seems to have been made routine by the FSF). Here’s how an
installed Qt library hierarchy looks (${ver} is the versiommber):

lusr/lib/qt

lusr/lib/qt-${ver}

{usr/lib/qt-${ver}/bin # Where you find moc
lusr/lib/qt-${ver}/lib # Where you find .so
lusr/lib/gt-${ver}/include  # Where you find header files

With this organization, you can have multiple versions coexisting. Client programs have to specify the
library version they want, but that's a small price to pay for not having the interfaces btbaknon

Provide RPMs

The de-facto standard format for installable binary packages is that used by the Red Hat Package
manager, RPM. It's featured in the most populaux distribution, and supported by effectively all
other Linux distributions (except Debian and Slackware; and Debian can instaRRbs).

Accordingly, it's a good idea for your project site to provide installable RPMs as well as source
tarballs.

It's also a good idea for you to include in your source tarball the RPM spec file, with a production that
makes RPMs from it in your Makefile. The spec file should have the extension ‘.spec’; that's how the
rpm -t option finds it in aarball.

For extra style points, generate your spec file with a shellscript that automatically plugs in the correct
version number by analyzing thakefile  or aversion.h

Note: if you supply source RPMs, use BuildRoot to make the program be btrippinor

Ivar/tmp . If you don't, during the course of running the make install part of your build, the install
will install the files in the real final places. This will happen even if there are file collisions, and even

if you didn’t want to install the package at all. When you're done, the files will have been installed and
your system’s RPM database will not know about it. Such badly behaved SRPMs are a minefield and
should beeschewed.

Provide checksums

Provide checksums with your binaries (tarballs, RPMs, etc.). This will allow people to verify that they
haven’t been corrupted or had Trojan-horse code insertbérim

While there are several commands you can use for this purpose (suwrh asdcksum) it is best to
use a cryptographically-secure hash function. The GPG package provides this capability via the
--detach-sign option; so does the GNU commamd5sum



For each binary you ship, your project web page should list the checksum and the command you used
to generatd.

Good communicationpractice

Your software and documentation won't do the world much good if nobody but you knows it exists.
Also, developing a visible presence for the project on the Internet will assist you in recruiting users
and co-developers. Here are the standard ways ttwatlo

Announceto c.o.l.a andFreshmeat

Announce new releasesd¢omp.os.linux.announc8esides being widely read itself, this group is a
major feeder for web-based what's-new sites|kkeshmeat

Announceto a relevant topicnewsgroup

Find Usenet topics group directly relevant to your application, and announce there as well. Post only
where theunctionof the code is relevant, and exerdigstraint.

If (for example) you are releasing a program written in Perl that queries IMAP servers, you should
certainly post to comp.mail.imap. But you should probably not post to comp.lang.perl unless the
program is also an instructive example of cutting-edget@anhiques.

Your announcement should include the URL of a projestisite.
Have a website

If you intend try to build any substantial user or developer community around your project, it should
have a website. Standard things to have on the wehcitele:

® The project charter (why it exists, who the audiencet@,

Download links for the projedources.

Instructions on how to join the project mailitigf(s).

A FAQ (Frequently Asked Questiont.

HTMLized versions of the projedocumentation
® Links to related and/or competipgojects.
Some project sites even have URLs for anonymous access to the mastetreeurce

Refer to the website examples in Chafii#@(Re-Usé)for examples of what a well-educated project
website lookdike.

Host project mailing lists
It's standard practice to have a private development list through which project collaborators can

communicate and exchange patches. You may also want to have an announcements list for people who
want to be kept informed of the projegbsocess.


http://www.freshmeat.net/

If you are running a project named ‘foo’. your developer list might be foo-dev or foo-friends; your
announcement list might feo-announce.

Releaseo major archives

See the sectiowhere Should lLook?in|14 (Re-Useglfor specifics on the major open-source archive
sites. You should release your packagthése.

Other important locationaclude:

e thelPython Softward\ctivity|site (for software written iRython).

e thel[CPAN the Comprehensive Perl Archive Network, (for software writtePer).


http://www.python.org/
http://language.perl.com/CPAN

The logic of licenses: how to piclone

The choice of license terms involves decisions about what, if any restrictions the author wants to put
on what people do with treoftware.

If you want to make no restrictions at all, you should put your software in the public domain. An
appropriate way to do this would be to include something like the following text at the head of each
file:

Placed in public domain by J. Random Hacker, 2003. Share and enjoy!

If you do this, you are surrendering your copyright. Anyone can do anything they like with any part of
the text. It doesn't get any freer thiuis.

But very little open-source software is actually placed in the public domain, because most open-source
developers want to use their ownership of the code to ensure that ibstays

Up

Best practices for working with Homd Why you should use a standard
open-sourcelevelopers - license



Why you should use a standardicense

The widely-known OSD-conformant licenses have well-established interpretive traditions. Developers
(and, to the extent they care, users) know what they imply, and have a reasonable take on the risks and
tradeoffs they involve. Therefore, use one of the standard licenses carried on the OSI site if at all
possible.

If you must write your own license, be sure to have it certified by OSI. This will avoid a lot of
argument and overhead. Unless you've been through it, you have no idea how nasty a licensing
flamewar can get; people become passionate because the licenses are regarded as almost-sacred
covenants touching the core values of the open-scoroenunity.

Furthermore, the presence of an established interpretive tradition may prove important if your license
is ever tested in court. At time of writing (early 2003) there is no case law either supporting or
invalidating any open-source license. However, it is a legal doctrine (at least in the U.S., and probably
in other common-law countries such as England and the rest of the British Commonwealth) that courts
are supposed to interpret licenses and contracts according to the expectations and practices of the
community in which they originated. There is thus good reason to hope that open-source community
practice will be determinative when the court system finally haspe.



Varieties of Open-Sourcelicensing

X Consortium License

The loosest kind of free-software license is one that grants unrestricted rights to copy, use, modify, and
redistribute modified copies as long as a copy of the copyright and license terms is retained in all
modifiedversions.

You can find a template for the standard X Consortium license |@1Shsitg

Most “shareware” licenses have terms like this as well. They may request a donation, but they don’t
make it a condition afise.

BSD ClassicLicense

The next most restrictive kind of license grants unrestricted rights to copy, use, modify, and
redistribute modified copies as long as a copy of the copyright and license terms is retained in all
modified versions, and an acknowledgement is made in advertising or documentation associated with
the package.

The original BSD license is the best-known license of this kind. Among parts of the free-software
culture that trace their lineages back to B3fix, this license is used even on a lot of free software
that was written thousands of miles fr@&arkeley.

It is also not uncommon to find minor variants of the BSD license that change the copyright holder
and omit the advertising requirement (making it effectively equivalent to the MIT license). Note that in
mid-1999 the Office of Technology Transfer of the University of California rescinded the advertising
clause in the BSD license. So the license on the BSD software has been relaxed in exaetyy this

You can find a BSD license template at|@®l sitg

Artistic License

The next most restrictive kind of license grants unrestricted rights to copy, use, and locally modify. It
allows redistribution of modified binaries, but restricts redistribution of modified sources in ways
intended to protect the interests of the authors and the free-sofwvaneunity.

The Artistic License, devised f&erland widely used in the Perl developer community, is of this

kind. It requires modified files to contain “prominent notice” that they have been altered. It also
requires people who redistribute changes to make them freely available and make efforts to propagate
them back to the free-softwatemmunity.

You can find a copy of the Artistic License at [D8lsitd

General Public License

The GNU General Public License (and its derivative, the Library or “Lesser” GPL) is the single most
widely used free-software license. Like the Artistic License, it allows redistribution of modified
sources provided the modified files bear “promirnestice”.


http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/artistic-license.html

The GPL requires that any program containing parts that are under GPL be wholly GPLed. (The exact
circumstances that trigger this requirement are not perfectly cleaetgbody.)

These extra requirements actually make the GPL more restrictive than any of the other
commonly-used licenses. (Larry Wall developed the Artistic License to avoid them while serving
many of the samebjectives.)

You can find a pointer to the GPL, and instructions about how to applfFisFatopylefsitd

Mozilla Public License

The Mozilla Public License is designed to support software which is open source, but may be linked
with closed-source modules or extensions. It requires that the distributed software ("Covered Code")
remain open, but permits add-ons called through a defined API to relnsdal.

You can find a template for the MPL at


http://www.gnu.org/copyleft.html
http://www.opensource.org/licenses/MPL-1.0.html

Chapter 18.Futures

Dangers and Opportunities
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The art of prophecy is very difficult — especially with respect téutee.
--Mark Twain

History is not over. Unix will continue to grow and change. The community and the tradition around
Unix will continue to evolve. Trying to forecast the future is a chancy business, but we can perhaps
anticipate it in two ways: first by looking at how Unix has coped with design challenges in the past;
second by identifying problems that are looking for solutions, and opportunities waiting to be
exploited.



Essenceand accident in Unixtradition

To understand how Unix’s design might change in the future, we can start by looking at how Unix
programming style has changed over time in the past. This effort leads us directly to one of the
challenges of understanding the Unix style — distinguishing between accident and essence. That is,
recognizing traits that arise from transient technical circumstances versus those that are deeply tied to
the central Unix design challenge — how to do modularity and abstraction right while also keeping
systems transparent asitnple.

This distinction can be difficult, because traits that arise as accidents have sometimes turned out to
have essential utility. Consider as an example the ‘Silence is golden’ rule of Unix interface design that
we examined in Chaptdd (Usernterfaceq)it began as an adaptation to slow teletypes, but

continued because programs with terse output could be combined in scripts more easily. Today, in an
environment where having many programs running visibly through a GUI is normal, it has a third kind
of utility; silent programs don’t distract or waste the usattention.

On the other hand, some traits that once seemed essential to Unix turned out to be accidents tied to a
particular set of cost ratios. For example, old-school Unix favored program designs (and
minilanguages like awk(1)) that did line-at-a-time processing of an input stream or record-at-a-time
processing of binary files, with any context that needed to be maintained between pieces carried by
elaborate state-machine code. New-school Unix design, on the other hand, is generally happy with the
assumption that a program can read its entire input into memory and thereafter random-access it at
will. Indeed, modern Unixes supply an mmap(2) call that allows the programmer to map an entire file
into virtual memory and completely hides the serialization of 1/0O to and fronspade.

This change trades away storage economy in order to get simpler and more transparent code. It's an
adaptation to the plunging cost of main storage relative to programmer time. Many of the differences
between old-school Unix designs in the 1970s and 1980s and those of the new post-1990 school trace
to the huge shift in relative costs that today makes all machine resources several orders of magnitude
cheaper relative to programmer time than they wel®@®.

Looking back, we can identify three specific technology changes that have driven significant changes
in Unix design style; internetworking, bit-mapped graphics displays, and the personal computer. In
each case, the Unix tradition has adapted to the challenge by discarding accidents that were no longer
adaptive and finding new applications for its essential ideas. Biological evolution works this way too.
Evolutionary biologists have a rule: “Don’t assume that historical origin specifies current utility or

vice versa.” A brief look at how Unix adapted in each of these cases may provide some clues to how
Unix might adapt itself to future technology shifts that we canncary@tipate.

Chaptef2 (History] described the first of these changes, the rise of internetworking, from the angle of
cultural history, telling howr CP/IPbroughthe original Unix and ARPANET cultures together after

1980. In chaptg8 (Multiprogramming)) the material on obsolescent IPC and networking methods

such as Indian Hill shared memory and Systesireams hints at the many false starts, missteps, and
dead ends that preoccupied Unix developers through much of the following decade. There was a good
deal of confusion abogtrotocol4®, and about the relationship between inter-machine networking

and inter-process communication among processes on therschine.

Eventually the confusion was cleared up when TCP/IP won and BSD soekedertetdnix’s
essentiakverything-is-a-byte-streametaphor. It became normal to use BSD sockets for both IPC and
networking, older methods for both largely fell out of use, and Unix software grew increasingly
indifferent to whether communicating components were hosted on the same or different machines. The



invention of the World Wide Web in 1990-1991 was the logiesllt.

When bit-mapped graphics and the example of the Macintosh arrived in 1984 a few years after
TCP/IP, they posed a rather more difficult challenge. The original GUIs from Xerox PARC and Apple
were beautiful, but wired together far too many levels of the system for Unix programmers to feel
comfortable with their design. The prompt response of Unix programmers was to make separation of
policy from mechanism an explicit principle; X windows established it by 1988. By splitting X widget
sets away from the display manager that was doing low-level graphics, they created an architecture
that was modular and clean in Unix terms, and one that could easily evolve better poliapever

But that was the easy part of the problem. The hard part was deciding whether Unix ought to have a
unified interface policy at all, and if so what it ought to be. Several different attempts to establish one
through proprietary toolkits like Motif failed. Today, in 2003 GNOME and KDE contend with each
other. While the debate on this question is not over in 2003, the persistence of different Ul styles that
we noted in Chapt¢rl (Usernterfacegseems telling. New-school Unix design has kept the

command line, and dealt with the tension between GUI and CLI approaches by writing lots of
CLI-engine/GUl-interface pairs that can be used in Botles.

The personal computer posed few major design challenges as a technology in itself. The 386 and later
chips were powerful enough to give the systems designed around them cost ratios similar to those of
the minicomputers, workstations, and servers on which Unix matured. The true challenge was a
change in the potential market for Unix; the much lower overall price of the hardware made personal
computers attractive to a vastly broader, less technically sophisticatgubpséation.

The proprietary-Unix vendors, used to the fatter margins from selling more powerful systems to
sophisticated buyers, were never interested in this wider market. The first serious initiatives towards
the end-user desktop came out of the open-source community and were mounted for essentially
ideological reasons. As of early 2003, market surveys indicateithat has reached about 4%-5%
sharethere.

Whether or not Linux ever does substantially better than this, the nature of the Unix community’s
response is already clear. We examined it the study of Linux in Clgfiientrastg)It includes

adopting a few technologies (such as CORBA and XML) from elsewhere, and putting a lot of effort
into naturalizing GUIs into the Unix world. But underneath the themed GUIs and the installation
packaging, the main emphasis is still on modularity and clean code — on getting the infrastructure for
serious, high-reliability computing and communicatidgbt.

The history of the large-scale desktop-focused developments like Mozilla and OpenOffice.org that

were launched in the late 1990s illustrates this well. In both these cases, the most important theme in
community feedback wasn’'t demand for new features or pressure to make a ship date — it was distaste
for monster monoliths, and a general sense that these huge programs would have to be slimmed down,
refactored, and carved into modules before they would be otheerthizerrassments.

Despite being accompanied by a great deal of innovation, the responses to all three technologies were
conservative with regard to the fundamental Unix design rules — seeking modularity, transparency,
separation of policy from mechanism, and the other qualities we've tried to characterize earlier in this
book. The learned response of Unix programmers, reinforced over thirty years, was to go back to first
principles — to try to get more leverage out of Unix’s basic abstractions of streams, namespaces, and
processes in preference to layering on nees.



I¥§ For a few years it looked like 1ISO’s 7-layer networking standard might compete successfully with

TCP/IP. It was dreamed up by a European standards committee politically horrified at the thought of

adopting any technology birthed in the bowels of the Pentagon. Alas, their indignation exceeded their
technical acuity. The result proved overcomplicated and unhelpf{[PadBpsky]for details.



Problemsin the design ofUnix

But are there serious problems with those basic abstractions? In ¢ghgghdosophy)we touched on
several issues that Unix arguably got wrong. Now that the open-source movement has put the design
future of Unix back in the hands of programmers and technical people, these are no longer decisions
we have to live with forever. We'll take a look at them in order to get a better handle on how Unix
might evolve in thduture.

A Unix file is just a big bag ofbytes

A Unix file is just a big bag of bytes, with no other attributes. In particular, there is no capability to
store information about the file type or a pointer to an associated application program out-of-band
from the file’s actuatiata.

More generally, everything is a byaream;even hardware devices are byte streams. This metaphor
was a tremendous success of early Unix, and a real advance over a world in which (for example)
compiled programs could not produce output that could be fed back to the coRip#sand shell
programmingspranfrom thismetaphor.

But Unix’s byte-stream metaphords central that Unix has trouble integrating software objects with
operations that don't fit neatly into the byte stream or file repertoire of operations (create, open, read,
write, delete). This is especially a problem for GUI objects such as icons, windows, and ‘live’
documents. Within a classical Unix model of the world, the only way to extend the
everything-is-a-byte-stream metaphor is through ioctl calls, a notoriously ugly collection of back doors
into kernelspace.

Fans of theMacintoshfamily of operating systems tend to be vociferous about this. They advocate a
model in which a single file name may hove both data and resource ‘forks’, the data fork
corresponding to the Unix byte stream and the resource fork being a collection of name/value pairs.
Unix partisans prefer approaches that make file data self-describing so that effectively the same sort of
metadata is stored in-band within file.

The problem with the in-band data approach is that every program that writes the file has to know
about it. Thus, for example, if we want the file to carry type information inside it, every tool that
touches it has to take care to either preserve the type field unaltered or interpret and then rewrite it.
While this would be theoretically possible to arrange, in practice it would be wyagile.

On the other hand, supporting file attributes raises awkward questions about which file operations
should preserve them. It's pretty clear that a copy of a named file to another name should copy the
source file’s attributes as well as its data — but suppose we cat(1) the file, redirecting the output of
cat(1l) to a newmame?

The answer to this question depends on whether the attributes are actually properties of filenames or
are in some magical way bundled with the file’s data as a sort of invisible preamble or postamble.
Then the question becomes which operations make the propésiids?

Xerox PARC filesystem designs grappled with this problem as far back as the 1970s. They had an
‘open serialized’ call which returned a byte stream containing both attributes and content. If applied to
a directory, it returned a serialization of the directory’s attributes plus the serialization of all the files in
it. It is not clear that this approach has ever bestered.



Linux 2.5 already supports attaching arbitrary name/value pairs as properties of a filename, but at time
of writing this capability is not yet much used dgyplications.

File deletion isforever

People who rememb@&iOPS-20often miss that system’s file-versioning facility. Opening an existing
file for write or deleting it actually renamed it in a predictable way including a version number; only
an explicit removal operation on a version file actually eras¢al

Unix does without this, at a not inconsiderable cost in user irritation when the wrong files get deleted
through a typo or unexpected effects of shallicarding.

There does not seem to be any forseeable prospect that this will change at the operating system level.
Unix developers like clear, simple operations that do what the user tells them to do, even if the user’s
instructions could amount to commanding “shoot me in the foot”. Their instinct is to say that

protecting the user from himself should be done at the GUI or application level, not in the operating
system.

The Unix security model may be togrimitive

Perhaps root is too powerful, and Unix should have finer-grained capabilities or ACLs (Access
Control Lists) for system-administration functions, rather than one superuser that can do anything.
People who take this position argue that too many system programs have permanent root privileges
through the set-user-ID mechanism; if even one can be compromised, intrusions everywhere will
follow.

This argument is weak, however. Modern Unixes allow any given user account to belong to multiple
security groups. Through use of the execute-permission and set-group-ID bits on program executables,
each group can in effect function as an ACL for fileprmgrams.

This theoretical possibility is very little used, however, suggesting that the demand for ACLs is much
less in practice than it is theory.

Unix has too many different kinds of names fothings

Unix unified files and local devices — they’re all just byte streams. But network devices accessed
through sockets have different semantics in a different namespace. TReoB&mating system, a later

effort by some of Unix’s principal designers, demonstrates that files can be smoothly unified with both
local and remote (network) devices, and all of these things can be managed through a namespace that
is dynamically adjustable per-user and epenprogram.

File systems might be consideredarmful

Was having a file system at all the wrong thing? Since the late 1970s there has been an intriguing
history of research into persistent object stores and operating systems that don’t have a shared global
filesystem at all, but rather treat disk storage as a huge swap area and do everything through
virtualized objecpointers.



Modern efforts in this line (such &R0S,see th€ROS projecsitg) hint that such designs can offer
large benefits including both provable conformance to a security policy and pagfemance.

It must be noted, however, that if this is a failure of the Unix design, it is equally a failure of all of its
competitors no major production operating system has yet followed thidff@ad.

[9 The operating systems of the Apple Newton and the AS/400 minicomputer could be considered
exceptions.
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Problemsin the environment of Unix

The old-time Unix culture has largely reinvented itself in the open-source movement. Doing so saved
us from extinction, but it also means that the problems of open source are nowweelts as

One of these is how to make open-source development economically sustainable. We have
reconnected with our roots in the collaborative, open process of Unix’s early days. We have largely
won the technical argument for abandoning secrecy and proprietary control. We have thought of ways
to cooperate with markets and managers on more equal terms than we ever could in the 1970s and
1980s, and in many ways our experiments have succeeded. In 2003 the open-source Unixes, and their
core development groups, have achieved a degree of mainstream respectability and authority that
would have been unimaginable as recently asnikle1990s.

We have come a long way. But we have a long way to go yet. We know what business models might
work in theory, and now we can even point at a sporadic handful of successes that demonstrate that
theydo work in practice; now we have to show that they can be made to work reliably over a longer
term.

One important sub-problem related to economic sustainability is how to organize end-user testing.
Historically, the Unix culture’s concentration on infrastructure has meant that we have not tended to
build programs that depended for their value on providing a comfortable interface for end-users. Now,
especially in the open-source Unixes that aim to compete directhiMidtbsoft and Apple, that is
changing. But end-user interfaces need to be systematically tested with real end users — and therein
lie somechallenges.

Real end-user testing demands facilities, specialists, and a level of monitoring that are difficult for the
distributed volunteer groups characteristic of open-source development to arrange. It may be,
therefore, that open-source word processors, spreadsheets, and other ‘productivity’ applications have
to be left in the hands of large corporate-sponsored efforts like OpenOffice.org that can afford the
overhead. Open-source developers consider single corporations to be single points of failure and worry
about such dependencies, but no better solution havgked.

These are economic problems. We have other problems of a more political nature, because success
makesenemies.

Some are familiaMicrosoft’sambitionfor an unchallengeable monopoly lock on computing made the
defeat of Unix a strategic goal for them in the mid-1980s five years before we knew we were in a
fight. In early 2003, despite having had several growth markets it was counting on largely usurped by
Linux, Microsoft is still the wealthiest and most powerful software company in the world. Microsoft
knows very well that it must defeat the new-school Unixes of the open-source movement in order to
survive. To defeat them, it must destroy or discredit the culture that prothaered

Unix’s comeback in the hands of the open-source community, and its association with the
freewheeling culture of the Internet, has made it newer enemies as well. Hollywood and Big Media
feel deeply threatened by the Internet and have launched a multi-pronged attack on uncontrolled
software development. Existing legislation like the Digital Millennium Copyright Act has already been
used to prosecute software developers who were doing things the media moguls disliked.
Contemplated schemes like the so-called Trusted Computing Platform Alliance and Palladium threaten
[E9 to make open-source development effectively illegal — and if open source goes down, Unix is
very likely to go down witht.



Unix and thehackersand the Internet againsticrosoft and Hollywood and Big Media. It's a struggle

we need to win for all our traditional reasons of professionalism, allegiance to our craft, and mutual
tribal loyalty. But there are larger reasons this struggle is important. The possibilities of politics are
increasingly shaped by communication technology — who can use it, who can censor it, who can
control it. Government and corporate control of the content of the nets, and of what people can do with
their computers, is a severe long-term threat to political freedom. We are the warriors of liberty in this
confrontation — not merely our own liberty, but everyone elseigedls

9 See th¢TCPAFAQ for a rather hair-raising summary of the possibilities by a noted security
specialist.
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Problemsin the culture of Unix

Just as important as the technical problems with Unix itself and the challenges consequent on its
success are the cultural problems of the community around it. There are at least two serious ones; a
lesser challenge of internal transition, and a greater one of of overcoming our histiiscal

The lesser challenge is that of friction between the old-school Unix gurus and the new-school
open-source crowd. The successiolx, in particular, is not an entirely comfortable phenomenon for

a lot of older Unix programmers. This is partly a generational problem. The raucous energy, naivete
and gleeful zealotry of the Linux kids sometimes grates on elders who have been around since the
1970s and (often rightly) consider themselves wiser. It's only exacerbated by the fact that the kids are
succeeding where the eldéaded.

The greater problem of psychology only became clear to the author after spending three days at a
Macintosh developer conference in 2000. It was a very enlightening experience to be immersed in a
programming culture with assumptions diametrically opposed to those of thevtihik

Macintosh programmers are all about the user experience. They're architects and decorators. They
design from the outside in, asking first “What kind of interaction do we want to support?” and then
building the application logic behind it to meet the demands of the user interface design. This leads to
programs that are very pretty and infrastructure that is weak and rickety. In one notorious example, as
late as Release 9 the Mac OS memory manager sometimes required the user to manually deallocate
memory by turfing out exited but still-resident programs. Unix people are viscerally revolted by this
kind of mal-design; they don’t understand how Macintosh people could livétwith

By contrast, Unix people are all about infrastructure. We are plumbers and stonemasons. We design
from the inside out, building mighty engines to solve abstractly-defined problems (like “How do we
get reliable packet-stream delivery from point A to point B over unreliable hardware and links?”). We
then wrap thin and often profoundly ugly interfaces around the engines. The commands date(1),
find(1), and ed(1) are notorious examples, but there are hundreds of others. Macintosh people are
viscerally revolted by this kind of mal-design; they don’t understand how Unix people can liie with

Both design philosophies have some validity, but the two camps have a great deal of difficulty seeing
each others’ points. The typical Unix developer’s reflex is to dismiss Macintosh software as gaudy
fluff, eye-candy for the ignorant, and to continue building software that appeals to other Unix
developers. If end-users don't like it, so much the worse for the end-users; they will come around
when they get alue.

In many ways this kind of parochialism has served us well. We are the keepers of the Internet and the
World Wide Web. Our software and our traditions dominate serious computing, the applications where
24/7 reliability and minimal downtime is a must. We really are extremely good at building solid
infrastructure; not perfect by any means, but there is no other software technical culture that has
anywhere close to our track record, and it is one to be ud

The problem is that we increasingly face challenges that demand a more inclusive view. Most of the
computers in the world don't live in server rooms, but rather in the hands of those end users. In early
Unix days, before personal computers, our culture defined itself partly as a revolt against the
priesthood of the mainframes, the keepers of the big iron. Later, we absorbed the power-to-the-people
idealism of the early microcomputer enthusiasts. But tedsgre the priesthoodye are the people

who run the networks and the big iron. And our implicit demand is that if you want to use our
software, you must learn to think liks.



In 2003, there is a deep ambivalence in our attitude — a tension between elitism and missionary
populism. We want to reach and convert the 92% of the world for whom computing means games and
multimedia and glossy GUI interfaces and (at their most technical) light email and word processing
and spreadsheets. We are spending major effort on projects like GNOME and KDE designed to give
Unix a pretty face. But we are still elitists at heart, deeply reluctant and in many cases unable to
identify with or listen to the needs of the Aunt Tillies of werld.

To non-technical end users, the software we build tends to be either bewildering and
incomprehensible, or clumsy and condescending, or both at the same time. Even when we try to do the
user-friendliness thing as earnestly as possible, we're woefully inconsistent at it. Our attitude and our
reflexes are just wrong for the job. Even when we want to listen to and help Aunt Tillie, we don’t

know how — we project our categories and our concerns on her and give her ‘solutions’ that she finds
as daunting as h@roblems.

Our greatest challenge as a culture is whether we can outgrow the assumptions that has served us so
well — whether we can acknowledge, not merely intellectually but in the sinew of daily practice, that
the Macintosh people havepaint.

We can turn aside from this; we can remain a priesthood appealing to a select minority of the best and
brightest, a geek meritocracy focused on our historical role as the keepers of the software
infrastructure and the networks. But if we do this, we will very likely go into decline and eventually
lose the dynamism that has sustained us through decades. Someone else will serve the people;
someone else will put themselves where the power and the money is, and own the future of 92% of all
software. The odds are, whether that someone eldiglissoft or not, that they will do it using

practices and software we don't muikte.

Or we can truly accept the challenge. The open-source movement is trying hard to do so. But the kind
of sustained work and intelligence we have brought to other problems in the past will not alone suffice.
Our attitudes must change in a fundamental and difficult way. We must learn humility before Aunt
Tillie, and relinquish some of the long-held prejudices that have made us so successfuhgt. the



Reasongo believe
The future of Unix is full of difficult problems. Would we truly want it any otivary?

For more than thirty years we have thrived on challenges. We pioneered the best practices of software
engineering. We created today’s Internet and Web. We have built the largest, most complex, and most
reliable software systems ever to exist. We outlastetBtdiemonopoly and we're making a run
againstMicrosoft’'s that is good enough to deeply frightbem.

Not that everything has been triumph by any means. In the 1980s we nearly destroyed ourselves by
acceding to the proprietary capture of Unix. We neglected the low end, the nontechnical end-users, for
far too long and thereby lefticrosoft an opening to grossly lower the quality standards of software.
Intelligent observers have pronounced our technology, our community, and our values to be dead any
number oftimes.

But always we have come storming back. We make mistakes. but we learn from our mistakes. We
have transmitted our culture across generations; we have absorbed much of what was best from the
early academibackersand the ARPANET experimenters and the microcomputer enthusiasts and a
number of other cultures. The open-source movement has resurrected the vigor and idealism of our
early years, and today we are stronger and more numerous than we hdaeaver

So far, betting against the Unix hackers has always been short-term smart but long-term stupid. We
can prevalil, if we chooge.



Appendix A. Glossary ofAbbreviations
API

Application ProgrammingnterfaceThe set of procedure calls that communicates with a linkable
procedure library or an operating-system kernel or the combinatiowtiof

BSD

Berkeley Systentistribution. The generic name of the Unix distributions issued by the
Computer Science Research Group at the University of CaliforBierkéleybetween 1976 and
1994, and of the open-source Unixes genetically descendedHeom

CLI

Command Linénterface.Considered archaic by some, but still very useful in the Wotd.

CPAN
Comprehensiv@erl ArchiveNetwork.The centrdWebrepositoryfor Perl modules and
extensions.

GNU

GNU'’s NotUnix! The recursive acronym for the Free Software Foundation’s project to produce
an entire free-software clone of Unix. This effort didn’t entirely succeed, but did produce many of
the essential tools of modern Unix development including Emacs and the GNU Compiler
Collection.

GUI

Graphical Usernterface.The modern style of application interface using mice, windows, and
icons invented at XEROX PARC during the 1970s, as opposed to the older CLI or roguelike
styles.

IDE

Integrated DevelopmegnvirinmentA GUI workbench for developing code, pfeatyring facilities
like symbolic debugging, version control, and data-structure browsing. These are not commonly
used under Unix, for reasons discussed in ChE@€Fools]

IETF

Internet Engineering Tadkorce. The entity responsible for defining Internet protocols such as
TCP/IP. A loose, collegial organization mainly of technjmzbple.

MIME

Multipurpose Internet MaiExtensionsA series of RFCs that describe standards for embedding
binary and multi-part messages within RFC-822 mail. Besides being used for mail transport,
MIME is used as an underlevel by important application protocols including HT TBEEE.


http://cpan.org/

0o

ObjectOriented.A style of programming that tries to encapsulate data to be manipulated and the
code that manipulates it in (theoretically) sealed containers called objects. By contrast,
non-object-oriented programming is more casual about exposing the internals of the data structure
andcode.

(ON)

OperatingSystemThe foundation software of a machine; that which schedules tasks, allocates
storage, and presents a default interface to the user between applications. The facilities an
operating system provides and its general design philosophy exert an extremely strong influence
on programming style and on the technical cultures that grow up around itsdubshes.

PDF

Postscript Documerftormat. The Postscript language for control of printers and other imaging
devices is designed to be streamed to printers. PDF is Postcript that is packaged with
bounding-box information so it can conveniently be used as a digpiagt.

PDP-11

Programmable Data Processaf. Possibly the single most successful minicomputer design in
history; first shipped in 1970, last shipped in 1990, and the immediate ancestor of the VAX. The
PDP-11 was the first major Unplatform.

PNG

Portable NetworkGraphics.The World Wide Web Consortium’s standard and recommended
format for bit-map graphics images. An elegantly-designed binary graphics format described in

Chaptef5 (Textuality}
RFC

Request FoCommentAn Internet standard. The name arose at a time when the documents were
regarded as proposals to be submitted to a then-nonexistent but anticipated formal approval
process of some sort. The formal approval process nesterialized.

RPC

Remote Procedur€all.Used of IPC methods that attempt to create the illusion that the processes
exchanging them are running in the same address space, so they can cheaply (a) share complex
structures, and (b) call each other like function libraries, ignoring latency and other performance
consideration. This illusion is notoriously difficult $astain.

TCP/IP

Tranmission Control Protocol/Intern@trotocol. The basic protocol of the Internet since the
conversion from NCP in 1983. Provides reliable transport ofslegams.

UDP/IP



Uniersal DatagranProtocol. Provides unreliable but low-latency transport for small data
packets.

Ul
UserlInterface.

VAX

Formally, Virtual AddressExtension.the name of a classic minicomputer design developed by
Digital Equipment Corporation (later merged with Compagq, later merged with Hewlett-Packard)
from thePDP-11.The first VAX shipped in 1977. For ten years after 1980 VAXen were among
the most important Unix platforms. Microprocessor reimplementations are still shipping today.
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Appendix C. Contributors

Anyone who has attended a USENIX conference in a fancy hotel can tell you that a sentence like
“You're one of those computer people, aren’t you?” is roughly equivalent to “Look, another
amazingly mobile form of slime mold!” in the mouth of a hotel cocktaiiress.

--ElizabethZwicky

Jim Gettyswas, with Bob Scheifler and Keith Packard, one of the principal architects of the X window
system in the late 1980s. He wrote much of the X library, the X license, and articulated the
"mechanism, not policy" central credo of thel&sign.

Keith Packardwas a major contributor to the X11 code. During a second phase of involvement
beginning in 1999, Keith rewrote the X rendering code, producing a more powerful but dramatically
smaller implementation suitable for handheld computerd>anik.

Eric S.Raymonchas been writing Unix software since 1982. In 1991 he ed@hedNew Hacker's
Dictionary, and has since been studying the Unix community and the Internet hacker culture from a
historical and anthropological perspective. In 1997 that study prodime@athedral and thBazaar

which helped (re)define and energize the open-source movement. He presently maintains more than
thirty open-source softwapzojects.
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